90 resultados para Renal vascular conductance

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The effect of acute inhibition of angiotensin-converting enzyme by captopril (50 mg) on renal haemodynamics and function was assessed in nine patients with essential hypertension on unrestricted sodium intake (n = 8) or low sodium diet (n = 1). 2. Captopril induced a rapid and significant decrease in arterial pressure, which was maximal within 60 min. 3. Effective renal plasma flow (ERPF) increased, glomerular filtration rate (GFR) did not change and filtration fraction (FF) decreased after captopril. No change in sodium excretion and a decrease in urinary potassium occurred. 4. In the patient on low sodium diet, captopril induced striking increases in GFR and ERPF (64 and 106% respectively). 5. The logarithm of baseline plasma renin activity was positvely correlated with the change in ERPF and negatively correlated with changes in FF and renal resistance. 6. The results indicate that in patients with essential hypertension angiotensin participates actively in the maintenance of renal vascular tone at the efferent arteriolar level. A possible influence of kinins remains to be defined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The goal of this study was to investigate whether angiotensin II receptor blockers (ARBs) induce a comparable blockade of AT1 receptors in the vasculature and in the kidney when the renin-angiotensin system is activated by a thiazide diuretic. METHOD: Thirty individuals participated in this randomized, controlled, single-blind study. The blood pressure and renal hemodynamic and tubular responses to a 1-h infusion of exogenous angiotensin II (Ang II 3 ng/kg per min) were investigated before and 24 h after a 7-day administration of either irbesartan 300 mg alone or in association with 12.5 or 25 mg hydrochlorothiazide (HCTZ). Irbesartan 300/25 mg was also compared with losartan 100 mg, valsartan 160 mg, and olmesartan 20 mg all in association with 25 mg HCTZ. Each participant received two treatments with a 1-week washout period between treatments. RESULTS: The blood pressure response to Ang II was blocked by more than 90% with irbesartan alone or in association with HCTZ and with olmesartan/HCTZ and by nearly 60% with valsartan/HCTZ and losartan/HCTZ (P < 0.05). In the kidney, Ang II reduced renal plasma flow by 36% at baseline (P < 0.001). Irbesartan +/- HCTZ and olmesartan/HCTZ blocked the renal hemodynamic response to Ang II nearly completely, whereas valsartan/HCTZ and losartan/HCTZ only blunted this effect by 34 and 45%, respectively. At the tubular level, Ang II significantly reduced urinary volume (-84%) and urinary sodium excretion (-65%) (P < 0.01). These tubular effects of Ang II were only partially blunted by the administration of ARBs. CONCLUSION: These data demonstrate that ARBs prescribed at their recommended doses do not block renal tubular AT1 receptors as effectively as vascular receptors do. This observation may account for the need of higher doses of ARB for renal protection. Moreover, our results confirm that there are significant differences between ARBs in their capacity to induce a sustained vascular and tubular blockade of Ang II receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tocolysis with nonsteroidal anti-inflammatory drugs (NSAIDs) has been widely accepted for several years. Recently, the use of the cyclooxygenase-2 (COX2) preferential NSAID nimesulide has been proposed. However, data reporting neonatal acute renal failure or irreversible end-stage renal failure after maternal ingestion of nimesulide question the safety of this drug for the fetus and the neonate. Therefore, this study was designed to define the renal effects of nimesulide in newborn rabbits. Experiments were performed in 28 newborn rabbits. Renal function and hemodynamic parameters were measured using inulin and para-aminohippuric acid clearances as markers of GFR and renal blood flow, respectively. After a control period, nimesulide 2, 20, or 200 microg/kg was given as an i.v. bolus, followed by a 0.05, 0.5, or 5 microg.kg(-1).min(-1) infusion. Nimesulide administration induced a significant dose-dependent increase in renal vascular resistance (29, 37, and 92%, respectively), with a concomitant decrease in diuresis (-5, -23, and -44%), GFR (-12, -23, and -47%), and renal blood flow (-23, -23, and -48%). These results are in contrast with recent reports claiming that selective COX2 inhibition could be safer for the kidney than nonselective NSAIDs. These experiments confirm that prostaglandins, by maintaining renal vasodilation, play a key role in the delicate balance regulating neonatal GFR. We conclude that COX2-selective/preferential inhibitors thus should be prescribed with the same caution as nonselective NSAIDs during pregnancy and in the neonatal period.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent data indicate that bradykinin participates in the regulation of neonatal glomerular function and also acts as a growth regulator during renal development. The aim of the present study was to investigate the involvement of bradykinin in the maturation of renal function. Bradykinin beta2-receptors of newborn rabbits were inhibited for 4 days by Hoe 140. The animals were treated with 300 microg/kg s.c. Hoe 140 (group Hoe, n = 8) or 0.9% NaCl (group control, n = 8) twice daily. Clearance studies were performed in anesthetized rabbits at the age of 8-9 days. Bradykinin receptor blockade did not impair kidney growth, as demonstrated by similar kidney weights in the two groups, nor did it influence blood pressure. Renal blood flow was higher, while renal vascular resistance and filtration fraction were lower in Hoe 140-treated rabbits. No difference in glomerular filtration rate was observed. The unexpectedly higher renal perfusion observed in group Hoe cannot be explained by the blockade of the known vasodilator and trophic effect of bradykinin. Our results indicate that in intact kallikrein-kinin system is necessary for the normal functional development of the kidney.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Pharmacological interruption of the renin-angiotensin system focuses on optimization of blockade. As a measure of intrarenal renin activity, we have examined renal plasma flow (RPF) responses in a standardized protocol. Compared with responses with angiotensin-converting enzyme inhibition (rise in RPF approximately 95 mL x min(-1) x 1.73 m(-2)), greater renal vasodilation with angiotensin receptor blockers (approximately 145 mL x min(-1) x 1.73 m(-2)) suggested more effective blockade. We predicted that blockade with the direct oral renin inhibitor aliskiren would produce renal vascular responses exceeding those induced by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS AND RESULTS: Twenty healthy normotensive subjects were studied on a low-sodium (10 mmol/d) diet, receiving separate escalating doses of aliskiren. Six additional subjects received captopril 25 mg as a low-sodium comparison and also received aliskiren on a high-sodium (200 mmol/d) diet. RPF was measured by clearance of para-aminohippurate. Aliskiren induced a remarkable dose-related renal vasodilation in low-sodium balance. The RPF response was maximal at the 600-mg dose (197+/-27 mL x min(-1) x 1.73 m(-2)) and exceeded responses to captopril (92+/-20 mL x min(-1) x 1.73 m(-2); P<0.01). Furthermore, significant residual vasodilation was observed 48 hours after each dose (P<0.01). The RPF response on a high-sodium diet was also higher than expected (47+/-17 mL x min(-1) x 1.73 m(-2)). Plasma renin activity and angiotensin levels were reduced in a dose-related manner. As another functional index of the effect of aliskiren, we found significant natriuresis on both diets. CONCLUSIONS: Renal vasodilation in healthy people with the potent renin inhibitor aliskiren exceeded responses seen previously with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. The effects were longer lasting and were associated with significant natriuresis. These results indicate that aliskiren may provide more complete and thus more effective blockade of the renin-angiotensin system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The circadian clock contributes to the control of BP, but the underlying mechanisms remain unclear. We analyzed circadian rhythms in kidneys of wild-type mice and mice lacking the circadian transcriptional activator clock gene. Mice deficient in clock exhibited dramatic changes in the circadian rhythm of renal sodium excretion. In parallel, these mice lost the normal circadian rhythm of plasma aldosterone levels. Analysis of renal circadian transcriptomes demonstrated changes in multiple mechanisms involved in maintaining sodium balance. Pathway analysis revealed the strongest effect on the enzymatic system involved in the formation of 20-HETE, a powerful regulator of renal sodium excretion, renal vascular tone, and BP. This correlated with a significant decrease in the renal and urinary content of 20-HETE in clock-deficient mice. In summary, this study demonstrates that the circadian clock modulates renal function and identifies the 20-HETE synthesis pathway as one of its principal renal targets. It also suggests that the circadian clock affects BP, at least in part, by exerting dynamic control over renal sodium handling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vascular effects of angiotensin converting enzyme inhibitors are mediated by the inhibition of the dual action of angiotensin converting enzyme (ACE): production of angiotensin II and degradation of bradykinin. The deleterious effect of converting enzyme inhibitors (CEI) on neonatal renal function have been ascribed to the elevated activity of the renin-angiotensin system. In order to clarify the role of bradykinin in the CEI-induced renal dysfunction of the newborn, the effect of perindoprilat was investigated in anesthetized newborn rabbits with intact or inhibited bradykinin B2 receptors. Inulin and PAH clearances were used as indices of GFR and renal plasma flow, respectively. Perindoprilat (20 microg/kg i.v.) caused marked systemic and renal vasodilation, reflected by a fall in blood pressure and renal vascular resistance. GFR decreased, while urine flow rate did not change. Prior inhibition of the B2 receptors by Hoe 140 (300 microg/kg s.c.) did not prevent any of the hemodynamic changes caused by perindoprilat, indicating that bradykinin accumulation does not contribute to the CEI-induced neonatal renal effects. A control group receiving only Hoe 140 revealed that BK maintains postglomerular vasodilation via B2 receptors in basal conditions. Thus, the absence of functional B2 receptors in the newborn was not responsible for the failure of Hoe 140 to prevent the perindoprilat-induced changes. Species- and/or age-related differences in the kinin-metabolism could explain these results, suggesting that in the newborn rabbit other kininases than ACE are mainly responsible for the degradation of bradykinin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The key role of intrarenal adenosine in mediating the hypoxemic acute renal insufficiency in newborn rabbits has been well demonstrated using the nonspecific adenosine antagonist theophylline. The present study was designed to define the role of adenosine A1 receptors during systemic hypoxemia by using the specific A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Renal function parameters were assessed in 31 anesthetized and mechanically ventilated newborn rabbits. In normoxia, DPCPX infusion induced a significant increase in diuresis (+44%) and GFR (+19%), despite a significant decrease in renal blood flow (RBF) (-22%) and an increase in renal vascular resistance (RVR) (+37%). In hypoxemic conditions, diuresis (-19%), GFR (-26%), and RBF (-35%) were decreased, whereas RVR increased (+33%). DPCPX administration hindered the hypoxemia-induced decrease in GFR and diuresis. However, RBF was still significantly decreased (-27%), whereas RVR increased (+22%). In all groups, the filtration fraction increased significantly. The overall results support the hypothesis that, in physiologic conditions, intrarenal adenosine plays a key role in regulating glomerular filtration in the neonatal period through preferential A1-mediated afferent vasoconstriction. During a hypoxemic stress, the A1-specific antagonist DPCPX only partially prevented the hypoxemia-induced changes, as illustrated by the elevated RVR and drop in RBF. These findings imply that the contribution of intrarenal adenosine to the acute adverse effects of hypoxemia might not be solely mediated via the A1 receptor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In early childhood, nonsteroidal anti-inflammatory drugs are mainly used to either prevent or treat premature labor of the mother and patent ductus arteriosus of the newborn infant. The most frequently used prostaglandin-synthesis inhibitor is indomethacin. Fetuses exposed to indomethacin in utero have been born with renal developmental defects, and in both the unborn child and the term and premature newborn this drug may compromise renal glomerular function. The latter has in the past also been observed when i.v. indomethacin or i.v. acetylsalicylic acid (aspirin) were administered to newborn rabbits. The present experiments were designed to evaluate whether ibuprofen has less renal side effects than indomethacin, as claimed. Three groups of anesthetized, ventilated, normoxemic neonatal rabbits were infused with increasing doses of ibuprofen (0.02, 0.2, 2.0 mg/kg body weight) and the following renal parameters were measured: urine volume, urinary sodium excretion, GFR, and renal plasma flow. Renal blood flow, filtration fraction, and the renal vascular resistance were calculated according to standard formulae. Intravenous ibuprofen caused a dose-dependent, significant reduction in urine volume, GFR, and renal blood flow with a fall in filtration fraction in the animals receiving the highest dose of ibuprofen (2 mg/kg body weight). There was a very steep rise in renal vascular resistance. Urinary sodium excretion decreased. These experiments in neonatal rabbits clearly show that acute i.v. doses of ibuprofen also have significant renal hemodynamic and functional side effects, not less than seen previously with indomethacin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute normocapnic hypoxemia can cause functional renal insufficiency by increasing renal vascular resistance (RVR), leading to renal hypoperfusion and decreased glomerular filtration rate (GFR). Insulin-like growth factor 1 (IGF-1) activity is low in fetuses and newborns and further decreases during hypoxia. IGF-1 administration to humans and adult animals induces pre- and postglomerular vasodilation, thereby increasing GFR and renal blood flow (RBF). A potential protective effect of IGF-1 on renal function was evaluated in newborn rabbits with hypoxemia-induced renal insufficiency. Renal function and hemodynamic parameters were assessed in 17 anesthetized and mechanically ventilated newborn rabbits. After hypoxemia stabilization, saline solution (time control) or IGF-1 (1 mg/kg) was given as an intravenous (i.v.) bolus, and renal function was determined for six 30-min periods. Normocapnic hypoxemia significantly increased RVR (+16%), leading to decreased GFR (-14%), RBF (-19%) and diuresis (-12%), with an increased filtration fraction (FF). Saline solution resulted in a worsening of parameters affected by hypoxemia. Contrarily, although mean blood pressure decreased slightly but significantly, IGF-1 prevented a further increase in RVR, with subsequent improvement of GFR, RBF and diuresis. FF indicated relative postglomerular vasodilation. Although hypoxemia-induced acute renal failure was not completely prevented, IGF-1 elicited efferent vasodilation, thereby precluding a further decline in renal function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The acute renal effects of hypoxemia and the ability of the co-administration of an angiotensin converting enzyme inhibitor (perindoprilat) and an adenosine receptor antagonist (theophylline) to prevent these effects were assessed in anesthetized and mechanically-ventilated rabbits. Renal blood flow (RBF) and glomerular filtration rate (GFR) were determined by the clearances of para-aminohippuric acid and inulin, respectively. Each animal acted as its own control. In 8 untreated rabbits, hypoxemia induced a significant drop in mean blood pressure (-12 +/- 2%), GFR (-16 +/- 3%) and RBF (-12 +/- 3%) with a concomitant increase in renal vascular resistance (RVR) (+ 18 +/- 5%), without changes in filtration fraction (FF) (-4 +/- 2%). These results suggest the occurrence of both pre- and postglomerular vasoconstriction during the hypoxemic stress. In 7 rabbits pretreated with intravenous perindoprilat (20 microg/kg), the hypoxemia-induced changes in RBF and RVR were prevented. FF decreased significantly (-18 +/- 2%), while the drop in GFR was partially blunted. These results could be explained by the inhibition of the angiotensin-mediated efferent vasoconstriction by perindoprilat. In 7 additional rabbits, co-administration of perindoprilat and theophylline (1 mg/kg) completely prevented the hypoxemia-induced changes in RBF (+ 11 +/- 3%) and GFR (+ 2 +/- 3%), while RVR decreased significantly (-14 +/- 3%). Since adenosine and angiotensin II were both shown to participate, at least in part, in the renal changes induced by hypoxemia, the beneficial effects of perindoprilat and theophylline in this model could be mediated by complementary actions of angiotensin II and adenosine on the renal vasculature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A group of neonatal (n=10) and 12-week-old (n=12) anesthetized, ventilated New Zealand white rabbits received an acute i.v. dose (40 mg/kg body weight) of acetylsalicylic acid (ASA, Aspirin). In the neonatal animals, i.v. ASA caused within 20 min a significant (P<0.01) fall in renal blood flow and glomerular filtration rate (GFR), with an equally significant (P<0.01) increase in filtration fraction and renal vascular resistance. The latter indicates greatly augmented renal vasconstriction or more precisely reduction in intrarenal vasodilatation by inhibition of vasodilatory prostaglandin (PG) synthesis. Urine volume decreased. The 12-week-old young adult animals responded in a similar, but significantly attenuated fashion. These experiments demonstrate that inhibition of PG synthesis in neonatal animals causes very rapid, reversible vasoconstriction, with a reduction in GFR. In addition, this study confirms previous observations that the renal hemodynamic response to the inhibition of PG synthesis is far more pronounced in neonatal animals than in (young) adult rabbits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The low GFR of newborns is maintained by various factors including the renin-angiotensin system. We previously established the importance of angiotensin II in the newborn kidney, using the angiotensin-converting enzyme inhibitor perindoprilat. The present study was designed to complement these observations by evaluating the role of angiotensin-type 1 (AT(1)) receptors, using losartan, a specific AT(1)-receptor blocker. Increasing doses of losartan were infused into anesthetized, ventilated, newborn rabbits. Renal function and hemodynamic variables were assessed using inulin and para-aminohippuric acid clearances as markers of GFR and renal plasma flow, respectively. Losartan 0.1 mg/kg slightly decreased mean blood pressure (-11%) and increased diuresis (+22%). These changes can be explained by inhibition of the AT(1)-mediated vasoconstrictive and antidiuretic effects of angiotensin, and activation of vasodilating and diuretic AT(2) receptors widely expressed in the neonatal period. GFR and renal blood flow were not modified. Losartan 0.3 mg/kg decreased mean blood pressure significantly (-15%), probably by inhibiting systemic AT(1) receptors. GFR significantly decreased (-25%), whereas renal blood flow remained stable. The decrease in filtration fraction (-21%) indicates predominant efferent vasodilation. At 3 mg/kg, the systemic hypotensive effect of losartan was marked (mean blood pressure, -28%), with decreased GFR and renal blood flow (-57% and -51%, respectively), a stable filtration fraction, and an increase in renal vascular resistance by 124%. The renal response to this dose can be considered as reflex vasoconstriction of afferent and efferent arterioles, rather than specific receptor antagonism. We conclude that under physiologic conditions, the renin-angiotensin is critically involved in the maintenance of GFR in the immature kidney.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Renal resistive index (RRI) varies directly with renal vascular stiffness and pulse pressure. RRI correlates positively with arteriolosclerosis in damaged kidneys and predicts progressive renal dysfunction. Matrix Gla-protein (MGP) is a vascular calcification inhibitor that needs vitamin K to be activated. Inactive MGP, known as desphospho-uncarboxylated MGP (dp-ucMGP), can be measured in plasma and has been associated with various cardiovascular (CV) markers, CV outcomes and mortality. In this study we hypothesize that increased RRI is associated with high levels of dp-ucMGP. DESIGN AND METHOD: We recruited participants via a multi-center family-based cross-sectional study in Switzerland exploring the role of genes and kidney hemodynamics in blood pressure regulation. Dp-ucMGP was quantified in plasma samples by sandwich ELISA. Renal doppler sonography was performed using a standardized protocol to measure RRIs on 3 segmental arteries in each kidney. The mean of the 6 measures was reported. Multiple regression analysis was performed to estimate associations between RRI and dp-ucMGP adjusting for sex, age, pulse pressure, mean pressure, renal function and other CV risk factors. RESULTS: We included 1035 participants in our analyses. Mean values were 0.64 ± 0.06 for RRI and 0.44 ± 0.21 (nmol/L) for dp-ucMGP. RRI was positively associated with dp-ucMGP both before and after adjustment for sex, age, body mass index, pulse pressure, mean pressure, heart rate, renal function, low and high density lipoprotein, smoking status, diabetes, blood pressure and cholesterol lowering drugs, and history of CV disease (P < 0.001). CONCLUSIONS: RRI is independently and positively associated with high levels of dp-ucMGP after adjustment for pulse pressure and common CV risk factors. Further studies are needed to determine if vitamin K supplementation can have a positive effect on renal vascular stiffness and kidney function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of intravenous (i.v.) torasemide on diuresis and renal function was evaluated in three groups of normoxemic, 5- to 10-day-old, newborn New Zealand White rabbits. The animals of group 1 received 0.2 mg/kg of torasemide i.v., whereas in group 2 an i.v. dose of 1.0 mg/kg was given. The third group of animals received a bolus i.v. dose of 1.0 mg/kg torasemide with continuous i.v. replacement of estimated urinary fluid and electrolyte losses. Torasemide proved to be an effective, potassium-sparing diuretic, without significant effect on glomerular filtration rate (GFR). Renal blood flow (RBF) fell and the renal vascular resistance (RVR) rose in all three groups of animals, although the rise in RVR in group 3 was not significant. These changes in renal hemodynamics were most pronounced in the animals of group 2 and are probably secondary to torasemide-induced hypovolemia (2.8% loss of body weight) and accompanying humoral reactions, such as an increase in angiotensin II (not measured). When the latter is prevented by simultaneous re-infusion of an electrolyte solution (group 3), replacing urinary losses, GFR increases and the changes in RBF and RVR are blunted. We conclude that torasemide is an effective, potassium-sparing diuretic in newborn rabbits. No evidence was found for a vasodilatory action of the drug.