18 resultados para Propionibacterium
em Université de Lausanne, Switzerland
Resumo:
The role of Propionibacterium acnes in acne and in a wide range of inflammatory diseases is well established. However, P. acnes is also responsible for infections involving implants. Prolonged aerobic and anaerobic agar cultures for 14 days and broth cultures increase the detection rate. In this paper, we review the pathogenic role of P. acnes in implant-associated infections such as prosthetic joints, cardiac devices, breast implants, intraocular lenses, neurosurgical devices, and spine implants. The management of severe infections caused by P. acnes involves a combination of antimicrobial and surgical treatment (often removal of the device). Intravenous penicillin G and ceftriaxone are the first choice for serious infections, with vancomycin and daptomycin as alternatives, and amoxicillin, rifampicin, clindamycin, tetracycline, and levofloxacin for oral treatment. Sonication of explanted prosthetic material improves the diagnosis of implant-associated infections. Molecular methods may further increase the sensitivity of P. acnes detection. Coating of implants with antimicrobial substances could avoid or limit colonization of the surface and thereby reduce the risk of biofilm formation during severe infections. Our understanding of the role of P. acnes in human diseases will likely continue to increase as new associations and pathogenic mechanisms are discovered.
Resumo:
The anaerobic Gram-positive bacterium Propionibacterium avidum is a common inhabitant of the skin with low pathogenicity. We report a case of P. avidum sacroilitis, psoas abscess and osteomyelitis in a 67-year-old male who had recently undergone surgical repair of an inguinal hernia. The organism was recovered from blood cultures, a bone biopsy specimen and specimens from the abscess. The spectrum of bone and joint infections caused by Propionibacterium is discussed. Infection by Propionibacterium spp. should be considered in patients with bone and joint infections.
Resumo:
Propionibacterium acnes is an important cause of orthopedic-implant-associated infections, for which the optimal treatment has not yet been determined. We investigated the activity of rifampin, alone and in combination, against planktonic and biofilm P. acnes in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration (MBC) were 0.007 and 4 μg/ml for rifampin, 1 and 4 μg/ml for daptomycin, 1 and 8 μg/ml for vancomycin, 1 and 2 μg/ml for levofloxacin, 0.03 and 16 μg/ml for penicillin G, 0.125 and 512 μg/ml for clindamycin, and 0.25 and 32 μg/ml for ceftriaxone. The P. acnes minimal biofilm eradication concentration (MBEC) was 16 μg/ml for rifampin; 32 μg/ml for penicillin G; 64 μg/ml for daptomycin and ceftriaxone; and ≥128 μg/ml for levofloxacin, vancomycin, and clindamycin. In the animal model, implants were infected by injection of 10⁹ CFU P. acnes in cages. Antimicrobial activity on P. acnes was investigated in the cage fluid (planktonic form) and on explanted cages (biofilm form). The cure rates were 4% for daptomycin, 17% for vancomycin, 0% for levofloxacin, and 36% for rifampin. Rifampin cured 63% of the infected cages in combination with daptomycin, 46% with vancomycin, and 25% with levofloxacin. While all tested antimicrobials showed good activity against planktonic P. acnes, for eradication of biofilms, rifampin was needed. In combination with rifampin, daptomycin showed higher cure rates than with vancomycin in this foreign-body infection model.
Resumo:
OBJECTIVES: Activity of rifampicin against Propionibacterium acnes biofilms was recently demonstrated, but rifampicin resistance has not yet been described in this organism. We investigated the in vitro emergence of rifampicin resistance in P. acnes and characterized its molecular background. METHODS: P. acnes ATCC 11827 was used (MIC 0.007 mg/L). The mutation rate was determined by inoculation of 10(9) cfu of P. acnes on rifampicin-containing agar plates incubated anaerobically for 7 days. Progressive emergence of resistance was studied by serial exposure to increasing concentrations of rifampicin in 72 h cycles using a low (10(6) cfu/mL) and high (10(8) cfu/mL) inoculum. The stability of resistance was determined after three subcultures of rifampicin-resistant isolates on rifampicin-free agar. For resistant mutants, the whole rpoB gene was amplified, sequenced and compared with a P. acnes reference sequence (NC006085). RESULTS: P. acnes growth was observed on rifampicin-containing plates with mutation rates of 2 ± 1 cfu × 10(-9) (4096× MIC) and 12 ± 5 cfu × 10(-9) (4 × MIC). High-level rifampicin resistance emerged progressively after 4 (high inoculum) and 13 (low inoculum) cycles. In rifampicin-resistant isolates, the MIC remained >32 mg/L after three subcultures. Mutations were detected in clusters I (amino acids 418-444) and II (amino acids 471-486) of the rpoB gene after sequence alignment with a Staphylococcus aureus reference sequence (CAA45512). The five following substitutions were found: His-437 → Tyr, Ser-442 → Leu, Leu-444 → Ser, Ile-483 → Val and Ser-485 → Leu. CONCLUSION: The rifampicin MIC increased from highly susceptible to highly resistant values. The resistance remained stable and was associated with mutations in the rpoB gene. To our knowledge, this is the first report of the emergence of rifampicin resistance in P. acnes.
Resumo:
Propionibacterium acnes is a Gram-positive commensal bacterium thought to be involved in the pathogenesis of acne vulgaris. Although the ability of P. acnes in the initiation of pro-inflammatory responses is well documented, little is known about adaptive immune responses to this bacterium. The observation that infiltrating immune cells consist mainly of CD4(+) T cells in the perifollicular space of early acne lesions suggests that helper T cells may be involved in immune responses caused by the intra-follicular colonization of P. acnes. A recent report showing that P. acnes can induce IL-17 production by T cells suggests that acne might be a T helper type 17 (Th17)-mediated disease. In line with this, we show in this work that, in addition to IL-17A, both Th1 and Th17 effector cytokines, transcription factors, and chemokine receptors are strongly upregulated in acne lesions. Furthermore, we found that, in addition to Th17, P. acnes can promote mixed Th17/Th1 responses by inducing the concomitant secretion of IL-17A and IFN-γ from specific CD4(+) T cells in vitro. Finally, we show that both P. acnes-specific Th17 and Th17/Th1 cells can be found in the peripheral blood of patients suffering from acne and, at lower frequencies, in healthy individuals. We therefore identified P. acnes-responding Th17/Th1 cells as, to our knowledge, a previously unreported CD4(+) subpopulation involved in inflammatory acne.
Resumo:
We described for the first time the amino acid substitutions conferring rifampicin resistance in eight Propionibacterium acnes strains isolated from patients with biofilm or device-related infections. We identified different mutations in cluster I and one mutation, never reported, in cluster II of the rpoB gene (I480V) associated with the most frequent one in cluster I (S442L). Half of the patients previously received treatment with rifampicin.
Resumo:
We report the case of a 37-year-old previously healthy woman diagnosed with a breast abscess due to Propionibacterium avidum after breast reduction surgery. This case emphasizes the potential pathogenicity and morbidity associated with this commensal skin organism.
Resumo:
BACKGROUND: Capsular fibrosis is a severe complication after breast implantation with an uncertain etiology. Microbial colonization of the prosthesis is hypothesized as a possible reason for the low-grade infection and subsequent capsular fibrosis. Current diagnostic tests consist of intraoperative swabs and tissue biopsies. Sonication of removed implants may improve the diagnosis of implant infection by detachment of biofilms from the implant surface. METHODS: Breast implants removed from patients with Baker grades 3 and 4 capsular contracture were analyzed by sonication, and the resulting sonication fluid was quantitatively cultured. RESULTS: This study investigated 22 breast implants (6 implants with Baker 3 and 16 implants with Baker 4 capsular fibrosis) from 13 patients. The mean age of the patients was 49 years (range, 31-76 years). The mean implant indwelling time was 10.4 years (range, 3 months to 30 years). Of the 22 implants, 12 were used for breast reconstruction and 10 for aesthetic procedures. The implants were located subglandularly (n = 12), submuscularly (n = 6), and subcutaneously (n = 4). Coagulase-negative staphylococci, Propionibacterium acnes, or both were detected in the sonication fluid cultures of nine implants (41%), eight of which grew significant numbers of microorganisms (>100 colonies/ml of sonication fluid). CONCLUSIONS: Sonication detected bacteria in 41% of removed breast implants. The identified bacteria belonged to normal skin flora. Further investigation is needed to determine any causal relation between biofilms and capsular fibrosis.
Resumo:
OBJECTIVES: Manifestations of external ventricular drain (EVD) - associated infections overlap with those of the underlying neurosurgical conditions. We analyzed characteristics of EVD-associated infections. METHODS: We included patients aged ≥18 years with EVD-associated infections from 1997 to 2008, using modified CDC criteria for nosocomial infections. Hospital charts were reviewed retrospectively and the in-hospital outcome was evaluated. RESULTS: Forty-eight patients with EVD-associated infections were included (median age, 52 years, range 20-74 years). The median EVD-indwelling time was 7 days (range, 1-39 days) and EVD-associated infection occurred 6 days after insertion (range, 1-17 days). In 23% of patients, meningitis occurred 1-10 days after EVD removal. Fever >38 °C was present in 79% of patients, but Glasgow Coma Scale (GCS) scores were reduced in only 29%, and headache, vomiting and/or neck stiffness were present in only 31%. The median cerebrospinal fluid (CSF) leukocyte count was higher at onset of EVD-associated infection than at EVD insertion (175 × 10(6)/l versus 46 × 10(6)/l, p = 0.021), but other CSF parameters did not differ significantly. The most commonly implicated organisms were coagulase-negative staphylococci (63%) and Propionibacterium acnes (15%). CONCLUSIONS: Fever and increased CSF leukocytes should raise the suspicion of EVD-associated infection, which may occur up to 10 days after removal of EVD.
Resumo:
Aujourd'hui, les problèmes des maladies infectieuses concernent l'émergence d'infections difficiles à traiter, telles que les infections associées aux implants et les infections fongiques invasives chez les patients immunodéprimés. L'objectif de cette thèse était de développer des stratégies pour l'éradication des biofilms bactériens (partie 1), ainsi que d'étudier des méthodes innovantes pour la détection microbienne, pour l'établissement de nouveaux tests de sensibilité (partie 2). Le traitement des infections associées aux implants est difficile car les biofilms bactériens peuvent résister à des niveaux élevés d'antibiotiques. A ce jour, il n'y a pas de traitement optimal défini contre des infections causées par des bactéries de prévalence moindre telles que Enterococcus faecalis ou Propionibacterium acnés. Dans un premier temps, nous avons démontré une excellente activité in vitro de la gentamicine sur une souche de E. faecalis en phase stationnaire de croissance Nous avons ensuite confirmé l'activité de la gentamicine sur un biofilm précoce en modèle expérimental animal à corps étranger avec un taux de guérison de 50%. De plus, les courbes de bactéricidie ainsi que les résultats de calorimétrie ont prouvé que l'ajout de gentamicine améliorait l'activité in vitro de la daptomycine, ainsi que celle de la vancomycine. In vivo, le schéma thérapeutique le plus efficace était l'association daptomycine/gentamicine avec un taux de guérison de 55%. En établissant une nouvelle méthode pour l'évaluation de l'activité des antimicrobiens vis-à-vis de micro-organismes en biofilm, nous avons démontré que le meilleur antibiotique actif sur les biofilms à P. acnés était la rifampicine, suivi par la penicilline G, la daptomycine et la ceftriaxone. Les études conduites en modèle expérimental animal ont confirmé l'activité de la rifampicine seule avec un taux de guérison 36%. Le meilleur schéma thérapeutique était au final l'association rifampicine/daptomycine avec un taux de guérison 63%. Les associations de rifampicine avec la vancomycine ou la levofloxacine présentaient des taux de guérisons respectivement de 46% et 25%. Nous avons ensuite étudié l'émergence in vitro de la résistance à la rifampicine chez P. acnés. Nous avons observé un taux de mutations de 10"9. La caractérisation moléculaire de la résistance chez les mutant-résistants a mis en évidence l'implication de 5 mutations ponctuelles dans les domaines I et II du gène rpoB. Ce type de mutations a déjà été décrit au préalable chez d'autres espèces bactériennes, corroborant ainsi la validité de nos résultats. La deuxième partie de cette thèse décrit une nouvelle méthode d'évaluation de l'efficacité des antifongiques basée sur des mesures de microcalorimétrie isotherme. En utilisant un microcalorimètre, la chaleur produite par la croissance microbienne peut être-mesurée en temps réel, très précisément. Nous avons évalué l'activité de l'amphotéricine B, des triazolés et des échinocandines sur différentes souches de Aspergillus spp. par microcalorimétrie. La présence d'amphotéricine Β ou de triazole retardait la production de chaleur de manière concentration-dépendante. En revanche, pour les échinochandines, seule une diminution le pic de « flux de chaleur » a été observé. La concordance entre la concentration minimale inhibitrice de chaleur (CMIC) et la CMI ou CEM (définie par CLSI M38A), avec une marge de 2 dilutions, était de 90% pour l'amphotéricine B, 100% pour le voriconazole, 90% pour le pozoconazole et 70% pour la caspofongine. La méthode a été utilisée pour définir la sensibilité aux antifongiques pour d'autres types de champignons filamenteux. Par détermination microcalorimétrique, l'amphotéricine B s'est avéré être l'agent le plus actif contre les Mucorales et les Fusarium spp.. et le voriconazole le plus actif contre les Scedosporium spp. Finalement, nous avons évalué l'activité d'associations d'antifongiques vis-à-vis de Aspergillus spp. Une meilleure activité antifongique était retrouvée avec l'amphotéricine B ou le voriconazole lorsque ces derniers étaient associés aux échinocandines vis-à-vis de A. fumigatus. L'association échinocandine/amphotéricine B a démontré une activité antifongique synergique vis-à-vis de A. terreus, contrairement à l'association échinocandine/voriconazole qui ne démontrait aucune amélioration significative de l'activité antifongique. - The diagnosis and treatment of infectious diseases are today increasingly challenged by the emergence of difficult-to-manage situations, such as infections associated with medical devices and invasive fungal infections, especially in immunocompromised patients. The aim of this thesis was to address these challenges by developing new strategies for eradication of biofilms of difficult-to-treat microorganisms (treatment, part 1) and investigating innovative methods for microbial detection and antimicrobial susceptibility testing (diagnosis, part 2). The first part of the thesis investigates antimicrobial treatment strategies for infections caused by two less investigated microorganisms, Enterococcus faecalis and Propionibacterium acnes, which are important pathogens causing implant-associated infections. The treatment of implant-associated infections is difficult in general due to reduced susceptibility of bacteria when present in biofilms. We demonstrated an excellent in vitro activity of gentamicin against E. faecalis in stationary growth- phase and were able to confirm the activity against "young" biofilms (3 hours) in an experimental foreign-body infection model (cure rate 50%). The addition of gentamicin improved the activity of daptomycin and vancomycin in vitro, as determined by time-kill curves and microcalorimetry. In vivo, the most efficient combination regimen was daptomycin plus gentamicin (cure rate 55%). Despite a short duration of infection, the cure rates were low, highlighting that enterococcal biofilms remain difficult to treat despite administration of newer antibiotics, such as daptomycin. By establishing a novel in vitro assay for evaluation of anti-biofilm activity (microcalorimetry), we demonstrated that rifampin was the most active antimicrobial against P. acnes biofilms, followed by penicillin G, daptomycin and ceftriaxone. In animal studies we confirmed the anti-biofilm activity of rifampin (cure rate 36% when administered alone), as well as in combination with daptomycin (cure rate 63%), whereas in combination with vancomycin or levofloxacin it showed lower cure rates (46% and 25%, respectively). We further investigated the emergence of rifampin resistance in P. acnes in vitro. Rifampin resistance progressively emerged during exposure to rifampin, if the bacterial concentration was high (108 cfu/ml) with a mutation rate of 10"9. In resistant isolates, five point mutations of the rpoB gene were found in cluster I and II, as previously described for staphylococci and other bacterial species. The second part of the thesis describes a novel real-time method for evaluation of antifungals against molds, based on measurements of the growth-related heat production by isothermal microcalorimetry. Current methods for evaluation of antifungal agents against molds, have several limitations, especially when combinations of antifungals are investigated. We evaluated the activity of amphotericin B, triazoles (voriconazole, posaconazole) and echinocandins (caspofungin and anidulafungin) against Aspergillus spp. by microcalorimetry. The presence of amphotericin Β or a triazole delayed the heat production in a concentration-dependent manner and the minimal heat inhibition concentration (MHIC) was determined as the lowest concentration inhibiting 50% of the heat produced at 48 h. Due to the different mechanism of action echinocandins, the MHIC for this antifungal class was determined as the lowest concentration lowering the heat-flow peak with 50%. Agreement within two 2-fold dilutions between MHIC and MIC or MEC (determined by CLSI M38A) was 90% for amphotericin B, 100% for voriconazole, 90% for posaconazole and 70% for caspofungin. We further evaluated our assay for antifungal susceptibility testing of non-Aspergillus molds. As determined by microcalorimetry, amphotericin Β was the most active agent against Mucorales and Fusarium spp., whereas voriconazole was the most active agent against Scedosporium spp. Finally, we evaluated the activity of antifungal combinations against Aspergillus spp. Against A. jumigatus, an improved activity of amphotericin Β and voriconazole was observed when combined with an echinocandin. Against A. terreus, an echinocandin showed a synergistic activity with amphotericin B, whereas in combination with voriconazole, no considerable improved activity was observed.
Resumo:
BACKGROUND/AIMS: After treatment with heat-killed Propionibacterium acnes mice show dense hepatic granuloma formation. Such mice develop liver injury in an interleukin (IL)-18-dependent manner after challenge with a sublethal dose LPS. As previously shown, LPS-stimulated Kupffer cells secrete IL-18 depending on caspase-1 and Toll-like receptor (TLR)-4 but independently of its signal adaptor myeloid differentiation factor 88 (MyD88), suggesting importance of another signal adaptor TIR domain-containing adapter inducing IFN-beta (TRIF). Nalp3 inflammasome reportedly controls caspase-1 activation. Here we investigated the roles of MyD88 and TRIF in P. acnes-induced hepatic granuloma formation and LPS-induced caspase-1 activation for IL-18 release. METHODS: Mice were sequentially treated with P. acnes and LPS, and their serum IL-18 levels and liver injuries were determined by ELISA and ALT/AST measurement, respectively. Active caspase-1 in LPS-stimulated Kupffer cells was determined by Western blotting. RESULTS: Macrophage-ablated mice lacked P. acnes-induced hepatic granuloma formation and LPS-induced serum IL-18 elevation and liver injury. Myd88(-/-) Kupffer cells, but not Trif(-/-) cells, exhibited normal caspase-1 activation upon TLR4 engagement in vitro. Myd88(-/-) mice failed to develop hepatic granulomas after P. acnes treatment and liver injury induced by LPS challenge. In contrast, Trif(-/-) mice normally formed the hepatic granulomas, but could not release IL-18 or develop the liver injury. Nalp3(-/-) mice showed the same phenotypes of Trif(-/-) mice. CONCLUSIONS: Propionibacterium acnes treatment MyD88-dependently induced hepatic granuloma formation. Subsequent LPS TRIF-dependently activated caspase-1 via Nalp3 inflammasome and induced IL-18 release, eventually leading to the liver injury.
Resumo:
Introduction La stabilisation dynamique de la colonne lombaire a été développée comme alternative à la spondylodèse pour les lombalgies chroniques dans l'optique de réduire le risque de dégénération du segment adjacent. Le système de neutralisation dynamique « Dynesys » produit par Zimmer (Suisse) est un des produits les plus populaires. Des études portant sur un suivi à moyen terme ont montré des taux de révision dans près de 30% des patients. Nous avons observé quelques cas d'infections tardives chez nos patients et avons décidé de les passer systématiquement en revue. La bactérie Propionibacterium acnés a été récemment identifiée comme cause d'infections à bas bruit de matériel prothétique. Matériels et méthodes Nous présentons une série consécutive de 50 implantations du système Dynesys. Les patients ont été suivis pendant une durée moyenne de 51 mois (0 - 91). Durant cette période, nous avons identifié 12 complications de type infectieuse et 11 complications de type mécanique nécessitant une ré-opération ou une ablation de matériel dans un collectif de 17 patients. Résultats Les infections de matériel se sont produites après une durée médiane de 52 mois (2-77). Les germes trouvés étaient Propionibacterium acnés dans 7 patients sur 11 (seul η = 4 ou en combinaison η = 3). La présentation clinique associe des douleurs nouvelles ou en augmentation et, à la radiologie conventionnelle, un descellement des vis. Cependant, 73.5% des patients présentent, à des degrés divers, des signes radiologiques de descellements sans avoir de symptômes d'infection. Conclusion Le haut taux d'infections tardives avec des germes peu virulents ainsi que la fréquence des signes de descellements de vis constatés nous amènent à suspecter un défaut d'intégration au niveau de l'interface entre l'os et les vis. Les chirurgiens devraient être attentifs à ces signes et exclure activement une infection chez les patients présentant des douleurs nouvelles (ou en augmentation) en combinaison de signes de descellement radiologiques. Une attitude agressive de révision chirurgicale est recommandée dans ces cas.
Resumo:
The infection of an intervertebral disk is a serious condition. The diagnosis often is elusive and difficult to make. It is imperative to have appropriate microbiologic specimens before the initiation of treatment. We report the case of a 51-year-old woman with lumbar spondylodiscitis caused by infection after the placement of an epidural catheter for postoperative analgesia. A spinal magnetic resonance imaging (MRI) scan confirmed the diagnosis, but computed tomography (CT)-guided fine-needle biopsy did not yield adequate material for a microbiologic diagnosis. Laparoscopic biopsies of the involved disk provided good specimens and a diagnosis of Propionibacterium acnes infection. We believe that this minimally invasive procedure should be performed when CT-guided fine-needle biopsy fails to yield a microbiologic diagnosis in spondylodiscitis.
Resumo:
BACKGROUND: Electrophysiological cardiac devices are increasingly used. The frequency of subclinical infection is unknown. We investigated all explanted devices using sonication, a method for detection of microbial biofilms on foreign bodies. METHODS AND RESULTS: Consecutive patients in whom cardiac pacemakers and implantable cardioverter/defibrillators were removed at our institution between October 2007 and December 2008 were prospectively included. Devices (generator and/or leads) were aseptically removed and sonicated, and the resulting sonication fluid was cultured. In parallel, conventional swabs of the generator pouch were performed. A total of 121 removed devices (68 pacemakers, 53 implantable cardioverter/defibrillators) were included. The reasons for removal were insufficient battery charge (n=102), device upgrading (n=9), device dysfunction (n=4), or infection (n=6). In 115 episodes (95%) without clinical evidence of infection, 44 (38%) grew bacteria in sonication fluid, including Propionibacterium acnes (n=27), coagulase-negative staphylococci (n=11), Gram-positive anaerobe cocci (n=3), Gram-positive anaerobe rods (n=1), Gram-negative rods (n=1), and mixed bacteria (n=1). In 21 of 44 sonication-positive episodes, bacterial counts were significant (>or=10 colony-forming units/mL of sonication fluid). In 26 sterilized controls, sonication cultures remained negative in 25 cases (96%). In 112 cases without clinical infection, conventional swab cultures were performed: 30 cultures (27%) were positive, and 18 (60%) were concordant with sonication fluid cultures. Six devices and leads were removed because of infection, growing Staphylococcus aureus, Streptococcus mitis, and coagulase-negative staphylococci in 6 sonication fluid cultures and 4 conventional swab cultures. CONCLUSIONS: Bacteria can colonize cardiac electrophysiological devices without clinical signs of infection.
Resumo:
BACKGROUND: It has been hypothesized that bacterial biofilms on breast implants may cause chronic inflammation leading to capsular contracture. The association between bacterial biofilms of removed implants and capsular contracture was investigated. METHODS: Breast implants explanted between 2006 and 2010 at five participating centres for plastic and reconstructive surgery were investigated by sonication. Bacterial cultures derived from sonication were correlated with patient, surgical and implant characteristics, and the degree of capsular contracture. RESULTS: The study included 121 breast implants from 84 patients, of which 119 originated from women and two from men undergoing gender reassignment. Some 50 breast prostheses were implanted for reconstruction, 48 for aesthetic reasons and 23 implants were used as temporary expander devices. The median indwelling time was 4·0 (range 0·1-32) years for permanent implants and 3 (range 1-6) months for temporary devices. Excluding nine implants with clinical signs of infection, sonication cultures were positive in 40 (45 per cent) of 89 permanent implants and in 12 (52 per cent) of 23 temporary devices. Analysis of permanent implants showed that a positive bacterial culture after sonication correlated with the degree of capsular contracture: Baker I, two of 11 implants; Baker II, two of ten; Baker III, nine of 23; and Baker IV, 27 of 45 (P < 0·001). The most frequent organisms were Propionibacterium acnes (25 implants) and coagulase-negative staphylococci (21). CONCLUSION: Sonication cultures correlated with the degree of capsular contracture, indicating the potential causative role of bacterial biofilms in the pathogenesis of capsular contracture. Registration number: NCT01138891 (http://www.clinicaltrials.gov).