42 resultados para Prediction error method

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résumé: L'impact de la maladie d'Alzheimer (MA) est dévastateur pour la vie quotidienne de la personne affectée, avec perte progressive de la mémoire et d'autres facultés cognitives jusqu'à la démence. Il n'existe toujours pas de traitement contre cette maladie et il y a aussi une grande incertitude sur le diagnostic des premiers stades de la MA. La signature anatomique de la MA, en particulier l'atrophie du lobe temporal moyen (LTM) mesurée avec la neuroimagerie, peut être utilisée comme un biomarqueur précoce, in vivo, des premiers stades de la MA. Toutefois, malgré le rôle évident du LMT dans les processus de la mémoire, nous savons que les modèles anatomiques prédictifs de la MA basés seulement sur des mesures d'atrophie du LTM n'expliquent pas tous les cas cliniques. Au cours de ma thèse, j'ai conduit trois projets pour comprendre l'anatomie et le fonctionnement du LMT dans (1) les processus de la maladie et dans (2) les processus de mémoire ainsi que (3) ceux de l'apprentissage. Je me suis intéressée à une population avec déficit cognitif léger (« Mild Cognitive Impairment », MCI), à risque pour la MA. Le but du premier projet était de tester l'hypothèse que des facteurs, autres que ceux cognitifs, tels que les traits de personnalité peuvent expliquer les différences interindividuelles dans le LTM. De plus, la diversité phénotypique des manifestations précliniques de la MA provient aussi d'une connaissance limitée des processus de mémoire et d'apprentissage dans le cerveau sain. L'objectif du deuxième projet porte sur l'investigation des sous-régions du LTM, et plus particulièrement de leur contribution dans différentes composantes de la mémoire de reconnaissance chez le sujet sain. Pour étudier cela, j'ai utilisé une nouvelle méthode multivariée ainsi que l'IRM à haute résolution pour tester la contribution de ces sous-régions dans les processus de familiarité (« ou Know ») et de remémoration (ou « Recollection »). Finalement, l'objectif du troisième projet était de tester la contribution du LTM en tant que système de mémoire dans l'apprentissage et l'interaction dynamique entre différents systèmes de mémoire durant l'apprentissage. Les résultats du premier projet montrent que, en plus du déficit cognitif observé dans une population avec MCI, les traits de personnalité peuvent expliquer les différences interindividuelles du LTM ; notamment avec une plus grande contribution du neuroticisme liée à une vulnérabilité au stress et à la dépression. Mon étude a permis d'identifier un pattern d'anormalité anatomique dans le LTM associé à la personnalité avec des mesures de volume et de diffusion moyenne du tissu. Ce pattern est caractérisé par une asymétrie droite-gauche du LTM et un gradient antéro-postérieur dans le LTM. J'ai interprété ce résultat par des propriétés tissulaires et neurochimiques différemment sensibles au stress. Les résultats de mon deuxième projet ont contribué au débat actuel sur la contribution des sous-régions du LTM dans les processus de familiarité et de remémoration. Utilisant une nouvelle méthode multivariée, les résultats supportent premièrement une dissociation des sous-régions associées aux différentes composantes de la mémoire. L'hippocampe est le plus associé à la mémoire de type remémoration et le cortex parahippocampique, à la mémoire de type familiarité. Deuxièmement, l'activation correspondant à la trace mnésique pour chaque type de mémoire est caractérisée par une distribution spatiale distincte. La représentation neuronale spécifique, « sparse-distributed», associée à la mémoire de remémoration dans l'hippocampe serait la meilleure manière d'encoder rapidement des souvenirs détaillés sans interférer les souvenirs précédemment stockés. Dans mon troisième projet, j'ai mis en place une tâche d'apprentissage en IRM fonctionnelle pour étudier les processus d'apprentissage d'associations probabilistes basé sur le feedback/récompense. Cette étude m'a permis de mettre en évidence le rôle du LTM dans l'apprentissage et l'interaction entre différents systèmes de mémoire comme la mémoire procédurale, perceptuelle ou d'amorçage et la mémoire de travail. Nous avons trouvé des activations dans le LTM correspondant à un processus de mémoire épisodique; les ganglions de la base (GB), à la mémoire procédurale et la récompense; le cortex occipito-temporal (OT), à la mémoire de représentation perceptive ou l'amorçage et le cortex préfrontal, à la mémoire de travail. Nous avons également observé que ces régions peuvent interagir; le type de relation entre le LTM et les GB a été interprété comme une compétition, ce qui a déjà été reporté dans des études récentes. De plus, avec un modèle dynamique causal, j'ai démontré l'existence d'une connectivité effective entre des régions. Elle se caractérise par une influence causale de type « top-down » venant de régions corticales associées avec des processus de plus haut niveau venant du cortex préfrontal sur des régions corticales plus primaires comme le OT cortex. Cette influence diminue au cours du de l'apprentissage; cela pourrait correspondre à un mécanisme de diminution de l'erreur de prédiction. Mon interprétation est que cela est à l'origine de la connaissance sémantique. J'ai également montré que les choix du sujet et l'activation cérébrale associée sont influencés par les traits de personnalité et des états affectifs négatifs. Les résultats de cette thèse m'ont amenée à proposer (1) un modèle expliquant les mécanismes possibles liés à l'influence de la personnalité sur le LTM dans une population avec MCI, (2) une dissociation des sous-régions du LTM dans différents types de mémoire et une représentation neuronale spécifique à ces régions. Cela pourrait être une piste pour résoudre les débats actuels sur la mémoire de reconnaissance. Finalement, (3) le LTM est aussi un système de mémoire impliqué dans l'apprentissage et qui peut interagir avec les GB par une compétition. Nous avons aussi mis en évidence une interaction dynamique de type « top -down » et « bottom-up » entre le cortex préfrontal et le cortex OT. En conclusion, les résultats peuvent donner des indices afin de mieux comprendre certains dysfonctionnements de la mémoire liés à l'âge et la maladie d'Alzheimer ainsi qu'à améliorer le développement de traitement. Abstract: The impact of Alzheimer's disease is devastating for the daily life of the affected patients, with progressive loss of memory and other cognitive skills until dementia. We still lack disease modifying treatment and there is also a great amount of uncertainty regarding the accuracy of diagnostic classification in the early stages of AD. The anatomical signature of AD, in particular the medial temporal lobe (MTL) atrophy measured with neuroimaging, can be used as an early in vivo biomarker in early stages of AD. However, despite the evident role of MTL in memory, we know that the derived predictive anatomical model based only on measures of brain atrophy in MTL does not explain all clinical cases. Throughout my thesis, I have conducted three projects to understand the anatomy and the functioning of MTL on (1) disease's progression, (2) memory process and (3) learning process. I was interested in a population with mild cognitive impairment (MCI), at risk for AD. The objective of the first project was to test the hypothesis that factors, other than the cognitive ones, such as the personality traits, can explain inter-individual differences in the MTL. Moreover, the phenotypic diversity in the manifestations of preclinical AD arises also from the limited knowledge of memory and learning processes in healthy brain. The objective of the second project concerns the investigation of sub-regions of the MTL, and more particularly their contributions in the different components of recognition memory in healthy subjects. To study that, I have used a new multivariate method as well as MRI at high resolution to test the contribution of those sub-regions in the processes of familiarity and recollection. Finally, the objective of the third project was to test the contribution of the MTL as a memory system in learning and the dynamic interaction between memory systems during learning. The results of the first project show that, beyond cognitive state of impairment observed in the population with MCI, the personality traits can explain the inter-individual differences in the MTL; notably with a higher contribution of neuroticism linked to proneness to stress and depression. My study has allowed identifying a pattern of anatomical abnormality in the MTL related to personality with measures of volume and mean diffusion of the tissue. That pattern is characterized by right-left asymmetry in MTL and an anterior to posterior gradient within MTL. I have interpreted that result by tissue and neurochemical properties differently sensitive to stress. Results of my second project have contributed to the actual debate on the contribution of MTL sub-regions in the processes of familiarity and recollection. Using a new multivariate method, the results support firstly a dissociation of the subregions associated with different memory components. The hippocampus was mostly associated with recollection and the surrounding parahippocampal cortex, with familiarity type of memory. Secondly, the activation corresponding to the mensic trace for each type of memory is characterized by a distinct spatial distribution. The specific neuronal representation, "sparse-distributed", associated with recollection in the hippocampus would be the best way to rapidly encode detailed memories without overwriting previously stored memories. In the third project, I have created a learning task with functional MRI to sudy the processes of learning of probabilistic associations based on feedback/reward. That study allowed me to highlight the role of the MTL in learning and the interaction between different memory systems such as the procedural memory, the perceptual memory or priming and the working memory. We have found activations in the MTL corresponding to a process of episodic memory; the basal ganglia (BG), to a procedural memory and reward; the occipito-temporal (OT) cortex, to a perceptive memory or priming and the prefrontal cortex, to working memory. We have also observed that those regions can interact; the relation type between the MTL and the BG has been interpreted as a competition. In addition, with a dynamic causal model, I have demonstrated a "top-down" influence from cortical regions associated with high level cortical area such as the prefrontal cortex on lower level cortical regions such as the OT cortex. That influence decreases during learning; that could correspond to a mechanism linked to a diminution of prediction error. My interpretation is that this is at the origin of the semantic knowledge. I have also shown that the subject's choice and the associated brain activation are influenced by personality traits and negative affects. Overall results of this thesis have brought me to propose (1) a model explaining the possible mechanism linked to the influence of personality on the MTL in a population with MCI, (2) a dissociation of MTL sub-regions in different memory types and a neuronal representation specific to each region. This could be a cue to resolve the actual debates on recognition memory. Finally, (3) the MTL is also a system involved in learning and that can interact with the BG by a competition. We have also shown a dynamic interaction of « top -down » and « bottom-up » types between the pre-frontal cortex and the OT cortex. In conclusion, the results could give cues to better understand some memory dysfunctions in aging and Alzheimer's disease and to improve development of treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: After cardiac surgery with cardiopulmonary bypass (CPB), acquired coagulopathy often leads to post-CPB bleeding. Though multifactorial in origin, this coagulopathy is often aggravated by deficient fibrinogen levels. OBJECTIVE: To assess whether laboratory and thrombelastometric testing on CPB can predict plasma fibrinogen immediately after CPB weaning. PATIENTS / METHODS: This prospective study in 110 patients undergoing major cardiovascular surgery at risk of post-CPB bleeding compares fibrinogen level (Clauss method) and function (fibrin-specific thrombelastometry) in order to study the predictability of their course early after termination of CPB. Linear regression analysis and receiver operating characteristics were used to determine correlations and predictive accuracy. RESULTS: Quantitative estimation of post-CPB Clauss fibrinogen from on-CPB fibrinogen was feasible with small bias (+0.19 g/l), but with poor precision and a percentage of error >30%. A clinically useful alternative approach was developed by using on-CPB A10 to predict a Clauss fibrinogen range of interest instead of a discrete level. An on-CPB A10 ≤10 mm identified patients with a post-CPB Clauss fibrinogen of ≤1.5 g/l with a sensitivity of 0.99 and a positive predictive value of 0.60; it also identified those without a post-CPB Clauss fibrinogen <2.0 g/l with a specificity of 0.83. CONCLUSIONS: When measured on CPB prior to weaning, a FIBTEM A10 ≤10 mm is an early alert for post-CPB fibrinogen levels below or within the substitution range (1.5-2.0 g/l) recommended in case of post-CPB coagulopathic bleeding. This helps to minimize the delay to data-based hemostatic management after weaning from CPB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MOTIVATION: Microarray results accumulated in public repositories are widely reused in meta-analytical studies and secondary databases. The quality of the data obtained with this technology varies from experiment to experiment, and an efficient method for quality assessment is necessary to ensure their reliability. RESULTS: The lack of a good benchmark has hampered evaluation of existing methods for quality control. In this study, we propose a new independent quality metric that is based on evolutionary conservation of expression profiles. We show, using 11 large organ-specific datasets, that IQRray, a new quality metrics developed by us, exhibits the highest correlation with this reference metric, among 14 metrics tested. IQRray outperforms other methods in identification of poor quality arrays in datasets composed of arrays from many independent experiments. In contrast, the performance of methods designed for detecting outliers in a single experiment like Normalized Unscaled Standard Error and Relative Log Expression was low because of the inability of these methods to detect datasets containing only low-quality arrays and because the scores cannot be directly compared between experiments. AVAILABILITY AND IMPLEMENTATION: The R implementation of IQRray is available at: ftp://lausanne.isb-sib.ch/pub/databases/Bgee/general/IQRray.R. CONTACT: Marta.Rosikiewicz@unil.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developments in the field of neuroscience have created a high level of interest in the subject of adolescent psychosis, particularly in relation to prediction and prevention. As the medical practice of adolescent psychosis and its treatment is characterised by a heterogeneity which is both symptomatic and evolutive, the somewhat poor prognosis of chronic development justifies the research performed: apparent indicators of schizophrenic disorders on the one hand and specific endophenotypes on the other are becoming increasingly important. The significant progresses made on the human genome show that the genetic predetermination in current psychiatric pathologies is complex and subject to moderating effects and there is therefore significant potential for nature-nurture interactions (between the environment and the genes). The road to be followed in researching the phenotypic expression of a psychosis gene is long and winding and is susceptible to many external influences at various levels with different effects. Neurobiological, neurophysiological, neuropsychological and neuroanatomical studies help to identify endophenotypes, which allow researchers to create identifying "markers" along this winding road. The endophenotypes could make it possible to redefine the nosological categories and enhance understanding of the physiopathology of schizophrenia. In a predictive approach, large-scale retrospective and prospective studies make it possible to identify risk factors, which are compatible with the neurodevelopmental hypothesis of schizophrenia. However, the predictive value of such markers or risk indicators is not yet sufficiently developed to offer a reliable early-detection method or possible schizophrenia prevention measures. Nonetheless, new developments show promise against the background of a possible future nosographic revolution, based on a paradigm shift. It is perhaps on the basis of homogeneous endophenotypes in particular that we will be able to understand what protects against, or indeed can trigger, psychosis irrespective of the clinical expression or attempts to isolate the common genetic and biological bases according to homogeneous clinical characteristics, which have to date, proved unsuccessful

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values &lt; or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values &lt; or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Ethylglucuronide (EtG) is a direct and specific metabolite of ethanol. Its determination in hair is of increasing interest for detecting and monitoring alcohol abuse. The quantification of EtG in hair requires analytical methods showing highest sensitivity and specificity. We present a fully validated method based on gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS). The method was validated using French Society of Pharmaceutical Sciences and Techniques (SFSTP) guidelines which are based on the determination of the total measurement error and accuracy profiles. Methods: Washed and powdered hair is extracted in water using an ultrasonic incubation. After purification by Oasis MAX solid phase extraction, the derivatized EtG is detected and quantified by GC-NCI-MS/MS method in the selected reaction monitoring mode. The transitions m/z 347 / 163 and m/z 347 / 119 were used for the quantification and identification of EtG. Four quality controls (QC) prepared with hair samples taken post mortem from 2 subjects with a known history of alcoholism were used. A proficiency test with 7 participating laboratories was first run to validate the EtG concentration of each QC sample. Considering the results of this test, these samples were then used as internal controls for validation of the method. Results: The mean EtG concentrations measured in the 4 QC were 259.4, 130.4, 40.8, and 8.4 pg/mg hair. Method validation has shown linearity between 8.4 and 259.4 pg/mg hair (r2 > 0.999). The lower limit of quantification was set up at 8.4 pg/mg. Repeatability and intermediate precision were found less than 13.2% for all concentrations tested. Conclusion: The method proved to be suitable for routine analysis of EtG in hair. GC-NCI-MS/MS method was then successfully applied to the analysis of EtG in hair samples collected from different alcohol consumers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporotic hip fractures increase dramatically with age and are responsible for considerable morbidity and mortality. Several treatments to prevent the occurrence of hip fracture have been validated in large randomized trials and the current challenge is to improve the identification of individuals at high risk of fracture who would benefit from therapeutic or preventive intervention. We have performed an exhaustive literature review on hip fracture predictors, focusing primarily on clinical risk factors, dual X-ray absorptiometry (DXA), quantitative ultrasound, and bone markers. This review is based on original articles and meta-analyses. We have selected studies that aim both to predict the risk of hip fracture and to discriminate individuals with or without fracture. We have included only postmenopausal women in our review. For studies involving both men and women, only results concerning women have been considered. Regarding clinical factors, only prospective studies have been taken into account. Predictive factors have been used as stand-alone tools to predict hip fracture or sequentially through successive selection processes or by combination into risk scores. There is still much debate as to whether or not the combination of these various parameters, as risk scores or as sequential or concurrent combinations, could help to better predict hip fracture. There are conflicting results on whether or not such combinations provide improvement over each method alone. Sequential combination of bone mineral density and ultrasound parameters might be cost-effective compared with DXA alone, because of fewer bone mineral density measurements. However, use of multiple techniques may increase costs. One problem that precludes comparison of most published studies is that they use either relative risk, or absolute risk, or sensitivity and specificity. The absolute risk of individuals given their risk factors and bone assessment results would be a more appropriate model for decision-making than relative risk. Currently, a group appointed by the World Health Organization and lead by Professor John Kanis is working on such a model. It will therefore be possible to further assess the best choice of threshold to optimize the number of women needed to screen for each country and each treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Terrestrial laser scanning (TLS) is one of the most promising surveying techniques for rockslope characteriza- tion and monitoring. Landslide and rockfall movements can be detected by means of comparison of sequential scans. One of the most pressing challenges of natural hazards is com- bined temporal and spatial prediction of rockfall. An outdoor experiment was performed to ascertain whether the TLS in- strumental error is small enough to enable detection of pre- cursory displacements of millimetric magnitude. This con- sists of a known displacement of three objects relative to a stable surface. Results show that millimetric changes cannot be detected by the analysis of the unprocessed datasets. Dis- placement measurement are improved considerably by ap- plying Nearest Neighbour (NN) averaging, which reduces the error (1σ ) up to a factor of 6. This technique was ap- plied to displacements prior to the April 2007 rockfall event at Castellfollit de la Roca, Spain. The maximum precursory displacement measured was 45 mm, approximately 2.5 times the standard deviation of the model comparison, hampering the distinction between actual displacement and instrumen- tal error using conventional methodologies. Encouragingly, the precursory displacement was clearly detected by apply- ing the NN averaging method. These results show that mil- limetric displacements prior to failure can be detected using TLS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vast territories that have been radioactively contaminated during the 1986 Chernobyl accident provide a substantial data set of radioactive monitoring data, which can be used for the verification and testing of the different spatial estimation (prediction) methods involved in risk assessment studies. Using the Chernobyl data set for such a purpose is motivated by its heterogeneous spatial structure (the data are characterized by large-scale correlations, short-scale variability, spotty features, etc.). The present work is concerned with the application of the Bayesian Maximum Entropy (BME) method to estimate the extent and the magnitude of the radioactive soil contamination by 137Cs due to the Chernobyl fallout. The powerful BME method allows rigorous incorporation of a wide variety of knowledge bases into the spatial estimation procedure leading to informative contamination maps. Exact measurements (?hard? data) are combined with secondary information on local uncertainties (treated as ?soft? data) to generate science-based uncertainty assessment of soil contamination estimates at unsampled locations. BME describes uncertainty in terms of the posterior probability distributions generated across space, whereas no assumption about the underlying distribution is made and non-linear estimators are automatically incorporated. Traditional estimation variances based on the assumption of an underlying Gaussian distribution (analogous, e.g., to the kriging variance) can be derived as a special case of the BME uncertainty analysis. The BME estimates obtained using hard and soft data are compared with the BME estimates obtained using only hard data. The comparison involves both the accuracy of the estimation maps using the exact data and the assessment of the associated uncertainty using repeated measurements. Furthermore, a comparison of the spatial estimation accuracy obtained by the two methods was carried out using a validation data set of hard data. Finally, a separate uncertainty analysis was conducted that evaluated the ability of the posterior probabilities to reproduce the distribution of the raw repeated measurements available in certain populated sites. The analysis provides an illustration of the improvement in mapping accuracy obtained by adding soft data to the existing hard data and, in general, demonstrates that the BME method performs well both in terms of estimation accuracy as well as in terms estimation error assessment, which are both useful features for the Chernobyl fallout study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear regression problems can often be reduced to linearity by transforming the response variable (e.g., using the Box-Cox family of transformations). The classic estimates of the parameter defining the transformation as well as of the regression coefficients are based on the maximum likelihood criterion, assuming homoscedastic normal errors for the transformed response. These estimates are nonrobust in the presence of outliers and can be inconsistent when the errors are nonnormal or heteroscedastic. This article proposes new robust estimates that are consistent and asymptotically normal for any unimodal and homoscedastic error distribution. For this purpose, a robust version of conditional expectation is introduced for which the prediction mean squared error is replaced with an M scale. This concept is then used to develop a nonparametric criterion to estimate the transformation parameter as well as the regression coefficients. A finite sample estimate of this criterion based on a robust version of smearing is also proposed. Monte Carlo experiments show that the new estimates compare favorably with respect to the available competitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model. Location State of Vaud, western Switzerland. Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp). Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once. Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.