92 resultados para Portfolio Diversification
em Université de Lausanne, Switzerland
Disentangling the effects of key innovations on the diversification of Bromelioideae (bromeliaceae).
Resumo:
The evolution of key innovations, novel traits that promote diversification, is often seen as major driver for the unequal distribution of species richness within the tree of life. In this study, we aim to determine the factors underlying the extraordinary radiation of the subfamily Bromelioideae, one of the most diverse clades among the neotropical plant family Bromeliaceae. Based on an extended molecular phylogenetic data set, we examine the effect of two putative key innovations, that is, the Crassulacean acid metabolism (CAM) and the water-impounding tank, on speciation and extinction rates. To this aim, we develop a novel Bayesian implementation of the phylogenetic comparative method, binary state speciation and extinction, which enables hypotheses testing by Bayes factors and accommodates the uncertainty on model selection by Bayesian model averaging. Both CAM and tank habit were found to correlate with increased net diversification, thus fulfilling the criteria for key innovations. Our analyses further revealed that CAM photosynthesis is correlated with a twofold increase in speciation rate, whereas the evolution of the tank had primarily an effect on extinction rates that were found five times lower in tank-forming lineages compared to tank-less clades. These differences are discussed in the light of biogeography, ecology, and past climate change.
Resumo:
The location and timing of domestication of the olive tree, a key crop in Early Mediterranean societies, remain hotly debated. Here, we unravel the history of wild olives (oleasters), and then infer the primary origins of the domesticated olive. Phylogeography and Bayesian molecular dating analyses based on plastid genome profiling of 1263 oleasters and 534 cultivated genotypes reveal three main lineages of pre-Quaternary origin. Regional hotspots of plastid diversity, species distribution modelling and macrofossils support the existence of three long-term refugia; namely the Near East (including Cyprus), the Aegean area and the Strait of Gibraltar. These ancestral wild gene pools have provided the essential foundations for cultivated olive breeding. Comparison of the geographical pattern of plastid diversity between wild and cultivated olives indicates the cradle of first domestication in the northern Levant followed by dispersals across the Mediterranean basin in parallel with the expansion of civilizations and human exchanges in this part of the world.
Resumo:
The drivers of species diversification and persistence are of great interest to current biogeography, especially in those global biodiversity hotspots' harbouring most of Earth's animal and plant life. Classical multispecies biogeographical work has yielded fascinating insights into broad-scale patterns of diversification, and DNA-based intraspecific phylogeographical studies have started to complement this picture at much finer temporal and spatial scales. The advent of novel next-generation sequencing (NGS) technologies provides the opportunity to greatly scale up the numbers of individuals, populations and species sampled, potentially merging intraspecific and interspecific approaches to biogeographical inference. Here, we outline these prospects and issues by using the example of an undisputed hotspot, the Cape of southern Africa. We outline the current state of knowledge on the biogeography of species diversification within the Cape, review the literature for phylogeographical evidence of its likely drivers and mechanisms, and suggest possible ways forward based on NGS approaches. We demonstrate the potential of these methods and current bioinformatic issues with the help of restriction-site-associated DNA (RAD) sequencing data for three highly divergent species of the Restionaceae, an important plant radiation in the Cape. A thorough understanding of the mechanisms that facilitate species diversification and persistence in spatially structured, species-rich environments will require the adoption of novel genomic and bioinformatic tools in biogeographical studies.
Resumo:
Dernière étape avant le monde professionnel, un cursus de spécialisation est un lieu de discussion, au carrefour des savoirs et des savoir-faire, permettant aux étudiants d'envisager sous un angle nouveau les contenus enseignés à l'université. Il ne s'agit plus seulement d'acquérir des connaissances mais aussi de développer des compétences transférables à d'autres types d'activité. L'équipe en charge de la spécialisation en Analyse du discours et de la communication publics proposée par la Faculté des Lettres de l'Université de Lausanne a oeuvré à l'intégration d'un nouvel outil informatique, le e-Portfolio, destiné à faciliter l'expression et la documentation des compétences individuelles développées par l'étudiant lors de son parcours de formation.
Resumo:
BackgroundThe importance of hybridisation during species diversification has long been debated among evolutionary biologists. It is increasingly recognised that hybridisation events occurred during the evolutionary history of numerous species, especially during the early stages of adaptive radiation. We study the effect of hybridisation on diversification in the clownfishes, a clade of coral reef fish that diversified through an adaptive radiation process. While two species of clownfish are likely to have been described from hybrid specimens, the occurrence and effect of hybridisation on the clade diversification is yet unknown.ResultsWe generate sequences of three mitochondrial genes to complete an existing dataset of nuclear sequences and document cytonuclear discordance at a node, which shows a drastic increase of diversification rate. Then, using a tree-based jack-knife method, we identify clownfish species likely stemming from hybridisation events. Finally, we use molecular cloning and identify the putative parental species of four clownfish specimens that display the morphological characteristics of hybrids.ConclusionsOur results show that consistently with the syngameon hypothesis, hybridisation events are linked with a burst of diversification in the clownfishes. Moreover, several recently diverged clownfish lineages likely originated through hybridisation, which indicates that diversification, catalysed by hybridisation events, may still be happening.
Resumo:
ABSTRACT: BACKGROUND: Climatic oscillations throughout the Quaternary had profound effects on temperate biodiversity, but the extent of Quaternary climate change was more severe in temperate regions of the northern hemisphere than in the southern hemisphere. We sought to determine whether this geographic disparity differentially influenced the timing of intraspecific diversification events within ectothermic and endothermic vertebrate species. Using published phylogenetic hypotheses, we gathered data on the oldest intraspecific diversification event within mammal, bird, freshwater fish, amphibian, and reptile species from temperate-zone areas. We then tested whether the timing of diversification events differed between hemispheres. RESULTS: Our analyses provide strong evidence that vertebrates from temperate regions of the northern hemisphere are younger than those from the southern hemisphere. However, we find little evidence to suggest that this relationship differs between endotherms versus ectotherms, or that it varies widely across the five classes of vertebrates that we considered. In addition, we find that on average, endothermic species are much younger than ectothermic species. CONCLUSION: Our findings suggest that geographic variation in the magnitude of climatic oscillations during the Quaternary led to substantial disparity in the timing of intraspecific diversification events between northern and southern hemisphere vertebrates, and that the magnitude of this divergence is largely congruent across vertebrate taxa.
Resumo:
The protein sequence deduced from the open reading frame of a human placental cDNA encoding a cAMP-responsive enhancer (CRE)-binding protein (CREB-327) has structural features characteristic of several other transcriptional transactivator proteins including jun, fos, C/EBP, myc, and CRE-BP1. Results of Southwestern analysis of nuclear extracts from several different cell lines show that there are multiple CRE-binding proteins, which vary in size in cell lines derived from different tissues and animal species. To examine the molecular diversity of CREB-327 and related proteins at the nucleic acid level, we used labeled cDNAs from human placenta that encode two different CRE-binding proteins (CREB-327 and CRE-BP1) to probe Northern and Southern blots. Both probes hybridized to multiple fragments on Southern blots of genomic DNA from various species. Alternatively, when a human placental c-jun probe was hybridized to the same blot, a single fragment was detected in most cases, consistent with the intronless nature of the human c-jun gene. The CREB-327 probe hybridized to multiple mRNAs, derived from human placenta, ranging in size from 2-9 kilobases. In contrast, the CRE-BP1 probe identified a single 4-kilobase mRNA. Sequence analyses of several overlapping human genomic cosmid clones containing CREB-327 sequences in conjunction with polymerase chain reaction indicates that the CREB-327/341 cDNAs are composed of at least eight or nine exons, and analyses of human placental cDNAs provide direct evidence for at least one alternatively spliced exon. Analyses of mouse/hamster-human hybridoma DNAs by Southern blotting and polymerase chain reaction localizes the CREB-327/341 gene to human chromosome 2. The results indicate that there is a dichotomy of CREB-like proteins, those that are related by overall structure and DNA-binding specificity as well as those that are related by close similarities of primary sequences.
Resumo:
Barraclough and co-workers (in a paper published in 1996) observed that there was a significant positive correlation between the rate of evolution of the rbcL chloroplast gene within families of flowering plants and the number of species in those families. We tested three additional data sets of our own (based on both plastid and nuclear genes) and used methods designed specifically for the comparison of sister families (based on random speciation and extinction). We show that, over all sister groups, the correlation between the rate of gene evolution and an increased diversity is not always present. Despite tending towards a positive association, the observation of individual probabilities presents a U-shaped distribution of association (i.e. it can be either significantly positive or negative). We discuss the influence of both phylogenetic sampling and applied taxonomies on the results.
Resumo:
BACKGROUND: Gene duplication is the primary source of new genes with novel or altered functions. It is known that duplicates may obtain these new functional roles by evolving divergent expression patterns and/or protein functions after the duplication event. Here, using yeast (Saccharomyces cerevisiae) as a model organism, we investigate a previously little considered mode for the functional diversification of duplicate genes: subcellular adaptation of encoded proteins. RESULTS: We show that for 24-37% of duplicate gene pairs derived from the S. cerevisiae whole-genome duplication event, the two members of the pair encode proteins that localize to distinct subcellular compartments. The propensity of yeast duplicate genes to evolve new localization patterns depends to a large extent on the biological function of their progenitor genes. Proteins involved in processes with a wider subcellular distribution (for example, catabolism) frequently evolved new protein localization patterns after duplication, whereas duplicate proteins limited to a smaller number of organelles (for example, highly expressed biosynthesis/housekeeping proteins with a slow rate of evolution) rarely relocate within the cell. Paralogous proteins evolved divergent localization patterns by partitioning of ancestral localizations ('sublocalization'), but probably more frequently by relocalization to new compartments ('neolocalization'). We show that such subcellular reprogramming may occur through selectively driven substitutions in protein targeting sequences. Notably, our data also reveal that relocated proteins functionally adapted to their new subcellular environments and evolved new functional roles through changes of their physico-chemical properties, expression levels, and interaction partners. CONCLUSION: We conclude that protein subcellular adaptation represents a common mechanism for the functional diversification of duplicate genes.