15 resultados para PROTEIN FUNCTION

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NKG2D is an activation receptor that allows natural killer (NK) cells to detect diseased host cells. The engagement of NKG2D with corresponding ligand results in surface modulation of the receptor and reduced function upon subsequent receptor engagement. However, it is not clear whether in addition to modulation the NKG2D receptor complex and/or its signaling capacity is preserved. We show here that the prolonged encounter with tumor cell-bound, but not soluble, ligand can completely uncouple the NKG2D receptor from the intracellular mobilization of calcium and the exertion of cell-mediated cytolysis. However, cytolytic effector function is intact since NKG2D ligand-exposed NK cells can be activated via the Ly49D receptor. While NKG2D-dependent cytotoxicity is impaired, prolonged ligand exposure results in constitutive interferon gamma (IFNgamma) production, suggesting sustained signaling. The functional changes are associated with a reduced presence of the relevant signal transducing adaptors DNAX-activating protein of 10 kDa (DAP-10) and killer cell activating receptor-associated protein/DNAX-activating protein of 12 kDa (KARAP/DAP-12). That is likely the consequence of constitutive NKG2D engagement and signaling, since NKG2D function and adaptor expression is restored to normal when the stimulating tumor cells are removed. Thus, the chronic exposure to tumor cells expressing NKG2D ligand alters NKG2D signaling and may facilitate the evasion of tumor cells from NK cell reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha1b-adrenergic receptor (AR) is a member of the large superfamily of seven transmembrane domain (TMD) G protein-coupled receptors (GPCR). Combining site-directed mutagenesis of the alpha1b-AR with computational simulations of receptor dynamics, we have explored the conformational changes underlying the process of receptor activation, i.e. the transition between the inactive and active states. Our findings suggest that the structural constraint stabilizing the alpha1b-AR in the inactive form is a network of H-bonding interactions amongst conserved residues forming a polar pocket and R143 of the DRY sequence at the end of TMDIII. We have recently reported that point mutations of D142, of the DRY sequence and of A293 in the distal portion of the third intracellular loop resulted in ligand-independent (constitutive) activation of the alpha1b-AR. These constitutively activating mutations could induce perturbations resulting in the shift of R143 out of the polar pocket. The main role of R143 may be to mediate receptor activation by triggering the exposure of several basic amino acids of the intracellular loops towards the G protein. Our investigation has been extended also to the biochemical events involved in the desensitization process of alpha1b-AR. Our results indicate that immediately following agonist-induced activation, the alpha1b-AR can undergo rapid agonist-induced phosphorylation and desensitization. Different members of the G protein coupled receptor kinase family can play a role in agonist-induced regulation of the alpha1b-AR. In addition, constitutively active alpha1b-AR mutants display different phosphorylation and internalization features. The future goal is to further elucidate the molecular mechanism underlying the complex equilibrium between activation and inactivation of the alpha1b-AR and its regulation by pharmacological substances. These findings can help to elucidate the mechanism of action of various agents displaying properties of agonists or inverse agonists at the adrenergic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus acts like a constitutively activated receptor of the tumor necrosis factor receptor (TNFR) family and is enriched in lipid rafts. We showed that LMP1 is targeted to lipid rafts in transfected HEK 293 cells, and that the endogenous TNFR-associated factor 3 binds LMP1 and is recruited to lipid rafts upon LMP1 expression. An LMP1 mutant lacking the C-terminal 55 amino acids (Cdelta55) behaves like the wild-type (WT) LMP1 with respect to membrane localization. In contrast, a mutant with a deletion of the 25 N-terminal residues (Ndelta25) does not concentrate in lipid rafts but still binds TRAF3, demonstrating that cell localization of LMP1 was not crucial for TRAF3 localization. Moreover, Ndelta25 inhibited WT LMP1-mediated induction of the transcription factors NF-kappaB and AP-1. Morphological data indicate that Ndelta25 hampers WT LMP1 plasma membrane localization, thus blocking LMP1 function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Notch1 gene has an important role in mammalian cell-fate decision and tumorigenesis. Upstream control mechanisms for transcription of this gene are still poorly understood. In a chemical genetics screen for small molecule activators of Notch signalling, we identified epidermal growth factor receptor (EGFR) as a key negative regulator of Notch1 gene expression in primary human keratinocytes, intact epidermis and skin squamous cell carcinomas (SCCs). The underlying mechanism for negative control of the Notch1 gene in human cells, as well as in a mouse model of EGFR-dependent skin carcinogenesis, involves transcriptional suppression of p53 by the EGFR effector c-Jun. Suppression of Notch signalling in cancer cells counteracts the differentiation-inducing effects of EGFR inhibitors while, at the same time, synergizing with these compounds in induction of apoptosis. Thus, our data reveal a key role of EGFR signalling in the negative regulation of Notch1 gene transcription, of potential relevance for combinatory approaches for cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

QUESTIONS UNDER STUDY AND PRINCIPLES: Estimating glomerular filtration rate (GFR) in hospitalised patients with chronic kidney disease (CKD) is important for drug prescription but it remains a difficult task. The purpose of this study was to investigate the reliability of selected algorithms based on serum creatinine, cystatin C and beta-trace protein to estimate GFR and the potential added advantage of measuring muscle mass by bioimpedance. In a prospective unselected group of patients hospitalised in a general internal medicine ward with CKD, GFR was evaluated using inulin clearance as the gold standard and the algorithms of Cockcroft, MDRD, Larsson (cystatin C), White (beta-trace) and MacDonald (creatinine and muscle mass by bioimpedance). 69 patients were included in the study. Median age (interquartile range) was 80 years (73-83); weight 74.7 kg (67.0-85.6), appendicular lean mass 19.1 kg (14.9-22.3), serum creatinine 126 μmol/l (100-149), cystatin C 1.45 mg/l (1.19-1.90), beta-trace protein 1.17 mg/l (0.99-1.53) and GFR measured by inulin 30.9 ml/min (22.0-43.3). The errors in the estimation of GFR and the area under the ROC curves (95% confidence interval) relative to inulin were respectively: Cockcroft 14.3 ml/min (5.55-23.2) and 0.68 (0.55-0.81), MDRD 16.3 ml/min (6.4-27.5) and 0.76 (0.64-0.87), Larsson 12.8 ml/min (4.50-25.3) and 0.82 (0.72-0.92), White 17.6 ml/min (11.5-31.5) and 0.75 (0.63-0.87), MacDonald 32.2 ml/min (13.9-45.4) and 0.65 (0.52-0.78). Currently used algorithms overestimate GFR in hospitalised patients with CKD. As a consequence eGFR targeted prescriptions of renal-cleared drugs, might expose patients to overdosing. The best results were obtained with the Larsson algorithm. The determination of muscle mass by bioimpedance did not provide significant contributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 × 10(-8)) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear peroxisome proliferator-activated receptors (PPARs) alpha, beta, and gamma activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. Activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel retardation experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase-dependent induction of PPARs but also their ligand-dependent induction, suggesting an interaction between both pathways that leads to maximal transcriptional induction by PPARs. Moreover, comparing PPAR alpha knockout (KO) with PPAR alpha WT mice, we show that the expression of the acyl CoA oxidase (ACO) gene can be regulated by PKA-activated PPAR alpha in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity, and we propose a model associating this pathway in the control of fatty acid beta-oxidation under conditions of fasting, stress, and exercise.