13 resultados para Non-smooth optimization
em Université de Lausanne, Switzerland
Resumo:
Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.
Resumo:
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.
Resumo:
Abstract Introduction The primary function of the contractile vascular smooth muscle cells (cVSMCs) is the regulation of the vascular contractility which means the adaptation of the vascular tonus in response to the modulation of the blood pressure and blood flow. The cVSMCs are essentially quiescent, and therefore their synthesis rate is very limited. They are characterized by the expression of contractile proteins specific to the muscular tissue including myosin, h-‐caldesmon and <-‐smooth muscle actin (〈-‐SMA). These contractile cells are strongly represented in the media layer of the arterial wall and, in a smaller proportion, of the vein wall. Their typical stretched-‐out morphology allows recognizing them by a histological analysis. They do not produce any extracellular matrix (ECM), and do not migrate through the different layers of the vessel wall, and are not directly involved in the development of intimal hyperplasia (IH). Neointimal formation occurs after endothelial disruption leading to complex molecular and biological mechanisms. The de-‐differentiation of cVSMCs into synthetic VSMCs (sVSMCs) is mentioned as a key element. These non mature cells are able to proliferate and produce ECM. The characterization of the vascular smooth muscle cells (VSMCs) from healthy and stenosed vascular tissues will contribue to the understanding of the different biological processes leading to IH and will be useful for the development of new therapies to interfere with the cVSMCs growth and migration. The aim of our research was to quantify the proportion of cVSMCs and sVSMCs into the healthy and pathologic human blood vessel wall and to characterize their phenotype. Methods We selected 23 specimens of arterial and venous segments from 18 patients. All these specimens were stored in the biobank from the thoracic and vascular surgery departement. 4 groups were designed (group 1 :arteries without lesions (n=3) ;group 2 : veins without lesions (n=1); group 3: arteries with stenosis (n=9); group 4: veins with stenosis (n=10)). Histology: 5µm-‐sections were made from each sample embedded in paraffin wax and further stained with hematoxylin & eosin (HE), Van Gieson's stain (VGEL) and Masson's Trichrome (TMB). Pathologic tissues were defined using the label that was given to the macroscopic samples by the surgeon and also, based on the histological analysis with HE and VGEL evaluating the presence of a thickened intima. The same was done to the control samples evaluating the absence of thickening. Immunohistochemistry : The primary antibodies were used :〈-‐SMA, vimentin, h-‐ caldesmon, calponin, smooth muscle-myosin heavy chain (SM-‐MHC), tropomyosin-‐4, retinol binding protein-‐1 (RBP-‐1), nonmuscle-‐myosin heavy chain-‐B (NM-‐MHC-‐B), Von Willebrand factor (VWF). A semi-‐quantitative assessment of the intensity of each sample stained was performed. Western Blot : Segments of arteries and veins were analyzed using the following primary antibodies :〈-‐SMA, Calponin, SM-‐MHC, NM-‐MHC-‐B. The given results were then normalized with tubulin. Results Our data showed that, when using immunohistochemistry analysis we found that〈-‐SMA was mostly expressed in control arteries, whereas NM-‐MHC-‐B in the pathologic ones. Using SM-‐MHC, calponin, vimentin and caldesmon we found no significative differences in the expression of these proteins in the control and in the pathologic samples. Western Blot analysis showed an inverse correlation between healthy and pathological samples as <-‐ SMA was more expressed in the pathological samples, while NM-‐MHC-‐B in the control group; SM-‐MHC and calponin were mostly expressed in the pathologic samples. Conclusion Our study showed no clear differences between stenotic and control arterial and venous segments using semi-‐quantitative assessement by immunohistochemistry. Western Blot showed a significant increased expression of 〈-‐SMA, calponin and SM-‐MHC in the arteries with stenosis, while NM-‐MHC-‐B was mostly expressed in the arteries without lesions. Further studies are needed to track the lineage of VSMCs to understand the mechanisms leading toIH.
Resumo:
1. In some tissues, a decrease in the number of cell surface receptors and alterations of the receptor coupling have been proposed as possible mechanisms mediating the deleterious effects of bacterial endotoxin in septic shock. 2. The effects of bacterial lipopolysaccharide (Escherichia coli 0111-B4; LPS) on vascular angiotensin II and vasopressin receptors have been examined in cultured aortic smooth muscle cells (SMC) of the rat by use of radioligand binding techniques. 3. In vascular SMC exposed to 1 micrograms ml-1 endotoxin for 24 h, a significant increase in angiotensin II binding was found. The change in [125I]-angiotensin II binding corresponded to an increase in the number of receptors whereas the affinity of the receptors was not affected by LPS. In contrast, no change in [3H]-vasopressin binding was observed. 4. The pharmacological characterization of angiotensin II binding sites in control and LPS-exposed cells demonstrated that LPS induced an increase in the AT1 subtype of the angiotensin II receptors. Receptor coupling as evaluated by measuring total inositol phosphates was not impaired by LPS. 5. The effect of LPS on the angiotensin II receptor was dose-, time- and protein-synthesis dependent and was associated with an increased expression of the receptor gene. 6. The ability of LPS to increase angiotensin II binding in cultured vascular SMC was independent of the endotoxin induction of NO-synthase. 7. These results suggest that, besides inducing factors such as cytokines and NO-synthase, endotoxin may enhance the expression of cell surface receptors. The surprising increase in angiotensin II binding in LPS exposed VSM cells may represent an attempt by the cells to compensate for the decreased vascular responsiveness. It may also result from a non-specific LPS-related induction of genes.
Resumo:
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.
Resumo:
Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.
Resumo:
Tissue-engineered grafts for the urinary tract are being investigated for the potential treatment of several urologic diseases. These grafts, predominantly tubular-shaped, usually require in vitro culture prior to implantation to allow cell engraftment on initially cell-free scaffolds. We have developed a method to produce tubular-shaped collagen scaffolds based on plastic compression. Our approach produces a ready cell-seeded graft that does not need further in vitro culture prior to implantation. The tubular collagen scaffolds were in particular investigated for their structural, mechanical and biological properties. The resulting construct showed an especially high collagen density, and was characterized by favorable mechanical properties assessed by axial extension and radial dilation. Young modulus in particular was greater than non-compressed collagen tubes. Seeding densities affected proliferation rate of primary human bladder smooth muscle cells. An optimal seeding density of 10(6) cells per construct resulted in a 25-fold increase in Alamar blue-based fluorescence after 2 wk in culture. These high-density collagen gel tubes, ready seeded with smooth muscle cells could be further seeded with urothelial cells, drastically shortening the production time of graft for urinary tract regeneration.
Resumo:
Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE(-/-)) and apoE(-/-)FAAH(-/-) mice. Anandamide levels were systemically elevated in apoE(-/-) mice after balloon injury. ApoE(-/-)FAAH(-/-) mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE(-/-) controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE(-/-) mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1(-/-) SMCs or when treating apoE(-/-) or apoE(-/-)FAAH(-/-) SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury.
Resumo:
Pharmacokinetic variability in drug levels represent for some drugs a major determinant of treatment success, since sub-therapeutic concentrations might lead to toxic reactions, treatment discontinuation or inefficacy. This is true for most antiretroviral drugs, which exhibit high inter-patient variability in their pharmacokinetics that has been partially explained by some genetic and non-genetic factors. The population pharmacokinetic approach represents a very useful tool for the description of the dose-concentration relationship, the quantification of variability in the target population of patients and the identification of influencing factors. It can thus be used to make predictions and dosage adjustment optimization based on Bayesian therapeutic drug monitoring (TDM). This approach has been used to characterize the pharmacokinetics of nevirapine (NVP) in 137 HIV-positive patients followed within the frame of a TDM program. Among tested covariates, body weight, co-administration of a cytochrome (CYP) 3A4 inducer or boosted atazanavir as well as elevated aspartate transaminases showed an effect on NVP elimination. In addition, genetic polymorphism in the CYP2B6 was associated with reduced NVP clearance. Altogether, these factors could explain 26% in NVP variability. Model-based simulations were used to compare the adequacy of different dosage regimens in relation to the therapeutic target associated with treatment efficacy. In conclusion, the population approach is very useful to characterize the pharmacokinetic profile of drugs in a population of interest. The quantification and the identification of the sources of variability is a rational approach to making optimal dosage decision for certain drugs administered chronically.
Resumo:
A large variety of cancer vaccines have undergone extensive testing in early-phase clinical trials. A limited number have also been tested in randomized phase II clinical trials. Encouraging trends toward increased survival in the vaccine arms have been recently observed for 2 vaccine candidates in patients with non-small-cell lung cancer. These have provided the impetus for the initiation of phase III trials in large groups of patients with lung cancer. These vaccines target 2 antigens widely expressed in lung carcinomas: melanoma-associated antigen 3, a cancer testis antigen; and mucin 1, an antigen overexpressed in a largely deglycosylated form in advanced tumors. Therapeutic cancer vaccines aim at inducing strong CD8 and CD4 T-cell responses. The majority of vaccines recently tested in phase I clinical trials show efficacy in terms of induction of specific tumor antigen immunity. However, clinical efficacy remains to be determined but appears limited. Efforts are thus aimed at understanding the basis for this apparent lack of effect on tumors. Two major factors are involved. On one hand, current vaccines are suboptimal. Strong adjuvant agents and appropriate tumor antigens are needed. Moreover, dose, route, and schedule also need optimization. On the other hand, it is now clear that large tumors often present a tolerogenic microenvironment that hampers effective antitumor immunity. The partial understanding of the molecular pathways leading to functional inactivation of T cells at tumor sites has provided new targets for intervention. In this regard, blockade of cytotoxic T-lymphocyte antigen-4 and programmed death-1 with humanized monoclonal antibodies has reached the clinical testing stage. In the future, more potent cancer vaccines will benefit from intense research in antigen discovery and adjuvant agents. Furthermore, it is likely that vaccines need to be combined with compounds that reverse major tolerogenic pathways that are constitutively active at the tumor site. Developing these combined approaches to vaccination in cancer promises new, exciting findings and, at the same time, poses important challenges to academic research institutions and the pharmaceutical industry.
Resumo:
BACKGROUND: Vitamin D deficiency is prevalent in HIV-infected individuals and vitamin D supplementation is proposed according to standard care. This study aimed at characterizing the kinetics of 25(OH)D in a cohort of HIV-infected individuals of European ancestry to better define the influence of genetic and non-genetic factors on 25(OH)D levels. These data were used for the optimization of vitamin D supplementation in order to reach therapeutic targets. METHODS: 1,397 25(OH)D plasma levels and relevant clinical information were collected in 664 participants during medical routine follow-up visits. They were genotyped for 7 SNPs in 4 genes known to be associated with 25(OH)D levels. 25(OH)D concentrations were analysed using a population pharmacokinetic approach. The percentage of individuals with 25(OH)D concentrations within the recommended range of 20-40 ng/ml during 12 months of follow-up and several dosage regimens were evaluated by simulation. RESULTS: A one-compartment model with linear absorption and elimination was used to describe 25(OH)D pharmacokinetics, while integrating endogenous baseline plasma concentrations. Covariate analyses confirmed the effect of seasonality, body mass index, smoking habits, the analytical method, darunavir/ritonavir and the genetic variant in GC (rs2282679) on 25(OH)D concentrations. 11% of the inter-individual variability in 25(OH)D levels was explained by seasonality and other non-genetic covariates, and 1% by genetics. The optimal supplementation for severe vitamin D deficient patients was 300,000 IU two times per year. CONCLUSIONS: This analysis allowed identifying factors associated with 25(OH)D plasma levels in HIV-infected individuals. Improvement of dosage regimen and timing of vitamin D supplementation is proposed based on those results.
Resumo:
Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.
Resumo:
In pig and humans, whose kidneys have a multi-calyceal collecting system, the initiation of ureteral peristalsis takes place in the renal calyces. In the pig and human ureter, recent evidence suggests that nitric oxide (NO) is an inhibitory mediator that may be involved in the regulation of peristalsis. This study was designed to assess whether the NO synthase/NO/cyclic GMP pathway modulates the motility of pig isolated calyceal smooth muscle. Immunohistochemistry revealed a moderate overall innervation of the smooth muscle layer, and no neuronal or inducible NO synthase (NOS) immunoreactivities. Endothelial NOS immunoreactivities were observed in the urothelium and vascular endothelium, and numerous cyclic GMP-immunoreactive (-IR) calyceal smooth muscle cells were found. As measured by monitoring the conversion of L-arginine to L-citrulline, Ca(2+)-dependent NOS activity was moderate. Assessment of functional effects was performed in tissue baths and showed that NO and SIN-1 decreased spontaneous and induced contractions of isolated preparations in a concentration-dependent manner. In strips exposed to NO, there was a 10-fold increase of the cyclic GMP levels compared with control preparations (P < 0.01). It is concluded that a non-neuronal NOS/NO/cyclic GMP pathway is present in pig calyces, where it may influence motility. The demonstration of cyclic GMP-IR smooth muscle cells suggests that NO acts directly on these cells. This NOS/NO/cyclic GMP pathway may be a target for drugs inhibiting peristalsis of mammalian upper urinary tract. Neurourol. Urodynam. 18:673-685, 1999.