281 resultados para NONALCOHOLIC FATTY LIVER

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The prevalence of nonalcoholic fatty liver disease is increasing worldwide and there is strong evidence that dietary factors play a role in its pathogenesis. The present review aims to provide a better understanding of how carbohydrates and other macronutrients may affect the disease. RECENT FINDINGS: The effects of carbohydrates on the development of nonalcoholic fatty liver disease differ depending upon the carbohydrate type; high-glycemic index foods are related to increased hepatic fat in both rodents and humans. Similarly, simple carbohydrates, such as fructose, stimulate hepatic de-novo lipogenesis and decrease lipid oxidation, thus leading to increased fat deposition. The underlying mechanisms may involve the activation of transcription factors. Fat intake broadly leads to hepatic fat deposition in rodents but few data are available on humans. Both carbohydrates and fat trigger inflammatory factors, which are closely related to metabolic disorders and nonalcoholic fatty liver disease. Lifestyle interventions appear to be the most appropriate first-line treatment for nonalcoholic fatty liver disease. SUMMARY: There is strong evidence that the diet may affect the development of nonalcoholic fatty liver disease. Although simple carbohydrates are clearly shown to have deleterious effects in humans, the role of fat remains controversial. Further studies will be required to evaluate the effects of macronutrient composition on the development of nonalcoholic fatty liver disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-nucleotide polymorphisms within major histocompatibility class II (MHC II) genes have been associated with an increased risk of drug-induced liver injury. However, it has never been addressed whether the MHC II pathway plays an important role in the development of nonalcoholic fatty liver disease, the most common form of liver disease. We used a mouse model that has a complete knockdown of genes in the MHC II pathway (MHCII(Δ/Δ)). Firstly we studied the effect of high-fat diet-induced hepatic inflammation in these mice. Secondly we studied the development of carbon-tetra-chloride- (CCl4-) induced hepatic cirrhosis. After the high-fat diet, both groups developed obesity and hepatic steatosis with a similar degree of hepatic inflammation, suggesting no impact of the knockdown of MHC II on high-fat diet-induced inflammation in mice. In the second study, we confirmed that the CCl4 injection significantly upregulated the MHC II genes in wild-type mice. The CCl4 treatment significantly induced genes related to the fibrosis formation in wild-type mice, whereas this was lower in MHCII(Δ/Δ) mice. The liver histology, however, showed no detectable difference between groups, suggesting that the MHC II pathway is not required for the development of hepatic fibrosis induced by CCl4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic syndrome (MetS) is a disease composed of different risk factors such as obesity, type 2 diabetes or dyslipidemia. The prevalence of this syndrome is increasing worldwide in parallel with the rise in obesity. Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in western countries, affecting more than 30% of the general population. NAFLD encompasses a spectrum of liver manifestations ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, which may ultimately progress to hepatocellular carcinoma. There is accumulating evidence supporting an association between NAFLD and MetS. Indeed, NAFLD is recognized as the liver manifestation of MetS. Insulin resistance is increasingly recognized as a key factor linking MetS and NAFLD. Insulin resistance is associated with excessive fat accumulation in ectopic tissues, such as the liver, and increased circulating free fatty acids, which can further promote inflammation and endoplasmic reticulum stress. This in turn aggravates and maintains the insulin resistant state, constituting a vicious cycle. Importantly, evidence shows that most of the patients developing NAFLD present at least one of the MetS traits. This review will define MetS and NAFLD, provide an overview of the common pathophysiological mechanisms linking MetS and NAFLD, and give a perspective regarding treatment of these ever growing metabolic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction La maladie « Non-Alcoholic Fatty Liver Disease ; NAFLD » et l'obésité provoque la résistance à l'insuline, un symptôme caractéristique du syndrome métabolique. La fréquence de ces maladies a augmenté de manière importante durant ces dernières décennies. Cette augmentation est étroitement liée à la surcharge énergétique dans notre culture modernisée. Pour combattre cette situation, des régimes riches en protéines semblent être bénéfiques, en particulier parce que l'acide aminé leucine stimule la satiété. Cependant l'effet des protéines alimentaires sur la stéatose hépatique reste peu connu. Résultats : Pour étudier cette question, nous avons nourri des souris C57B6/J (âgées de 5 semaines) avec un régime standard (10% kcal graisse, 20% kcal protéine), un régime riche en graisse (45% kcal graisse, 20% kcal protéine) ou un régime riche en graisse et enrichi en protéines (45% kcal graisse, 40% kcal protéine) pendant 10 semaines. Nous avons ainsi montré que l'addition de protéines au régime gras permet de prévenir la stéatose hépatique. Dans un deuxième temps nous avons testé si cet effet bénéfique des protéines alimentaires provient des acides aminés ramifiés (Branched-chain amino acids= BCAA : leucine, isoleucine, valine), composants majeurs de protéines alimentaires. Pour ce faire, nous avons ajouté un groupe de souris nourries au régime riche en graisses + BCAA (45% kcal graisse, 23% kcal protéine). Nos résultats montrent que l'addition des BCAA ne protège pas contre la stéatose hépatique, mais, au contraire, aggrave l'obésité et l'hyperinsulinémie. De manière intéressante, nous avons observé que la supplémentation en protéines ou en BCAA induit des effets différents sur la prise alimentaire et la dépense énergétique. Conclusion : Notre étude suggère clairement que les protéines alimentaires protègent contre l'obésité et la stéatose hépatique. Elle confirme également que les composants majeurs des protéines alimentaires (BCAA) n'exercent pas cet effet protecteur, mais qu'il aggrave le syndrome métabolique. Etant donné que l'ingestion importante et chronique de protéines alimentaires est délétère pour le rein, il serait très intéressant d'identifier les acides aminés spécifiques qui induiraient le même effet protecteur que les protéines alimentaires, mais sans perturber le fonctionnement rénal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fructose is mainly consumed with added sugars (sucrose and high fructose corn syrup), and represents up to 10% of total energy intake in the US and in several European countries. This hexose is essentially metabolized in splanchnic tissues, where it is converted into glucose, glycogen, lactate, and, to a minor extent, fatty acids. In animal models, high fructose diets cause the development of obesity, insulin resistance, diabetes mellitus, and dyslipidemia. Ectopic lipid deposition in the liver is an early occurrence upon fructose exposure, and is tightly linked to hepatic insulin resistance. In humans, there is strong evidence, based on several intervention trials, that fructose overfeeding increases fasting and postprandial plasma triglyceride concentrations, which are related to stimulation of hepatic de novo lipogenesis and VLDL-TG secretion, together with decreased VLDL-TG clearance. However, in contrast to animal models, fructose intakes as high as 200 g/day in humans only modestly decreases hepatic insulin sensitivity, and has no effect on no whole body (muscle) insulin sensitivity. A possible explanation may be that insulin resistance and dysglycemia develop mostly in presence of sustained fructose exposures associated with changes in body composition. Such effects are observed with high daily fructose intakes, and there is no solid evidence that fructose, when consumed in moderate amounts, has deleterious effects. There is only limited information regarding the effects of fructose on intrahepatic lipid concentrations. In animal models, high fructose diets clearly stimulate hepatic de novo lipogenesis and cause hepatic steatosis. In addition, some observations suggest that fructose may trigger hepatic inflammation and stimulate the development of hepatic fibrosis. This raises the possibility that fructose may promote the progression of non-alcoholic fatty liver disease to its more severe forms, i.e. non-alcoholic steatohepatitis and cirrhosis. In humans, a short-term fructose overfeeding stimulates de novo lipogenesis and significantly increases intrahepatic fat concentration, without however reaching the proportion encountered in non-alcoholic fatty liver diseases. Whether consumption of lower amounts of fructose over prolonged periods may contribute to the pathogenesis of NAFLD has not been convincingly documented in epidemiological studies and remains to be further assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statins are a cornerstone of cardiovascular prevention. Their utilization is mostly well tolerated and safe: the commonly reported hepatic adverse effect is an asymptomatic, reversible and dose-related increase in liver enzyme levels occurring in case of risks factors. Statins do not worsen liver function in most patients with chronic liver diseases, including nonalcoholic fatty liver disease and hepatitis C, and might be used cautionsly. However, decompensated cirrhosis and acute liver failure are contraindications for statins. Routine hepatic biochemical test monitoring is questioned and might be performed in following situations: chronic liver diseases, alcohol consumption, drug interactions. Other causes should be screened and treatment be temporarily withheld in case of an ALT elevation > 3 times the upper limit of the norm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: La prévalence de la «non-alcoholic fatty liver disease (NAFLD)» dans les pays industrialisés augment de manière exponentielle. La NAFLD se développe d'une simple stéatose hépatique jusqu'à l'hépatite, puis à la cirrhose. De plus, la stéatose hépatique est fréquemment accompagnée par une résistance à l'insuline, une des causes principales du diabète. Les lipides intermédiaires, tels que céramides et diacylglycérols, ont été décrits comme induisant la résistance à l'insuline. Cependant, nous avons démontré dans notre modèle de stéatose hépatique, que les souris présentant une invalidation de la protéine «microsomal triglyceride transfer protein» (Mtpp) au niveau hépatique, ne développent pas de résistance à l'insuline. Ceci suggère fortement l'existence d'autres mécanismes susceptibles d'induire la résistance à l'insuline. Résultats: Grâce à une analyse de Microarray, nous avons observé une augmentation de l'expression des gènes «cell-death inducing DFFA-like effector c (CIDEC)», «lipid storage droplet protein 5 (LSDP5)» et «Bernardinelli-Seip congenital lipodystrophy 2 homolog (Seipin)» dans le foie des souris Mttp. Ces gènes ont récemment été identifiés comme des protéines localisées autour des gouttelettes lipidiques. Nous avons également constaté que la souris Mttp développe plutôt une microstéatose (petites gouttelettes lipidiques) qu'une macrostéatose qui est normalement observée chez les patients avec NAFLD. Nous avons étudié l'expression des gènes associés aux gouttelettes lipidiques chez les patients obèses avec stéatose hépatique, avec ou sans résistance à l'insuline. Comparés aux sujets sains sans stéatose hépatique, les patients avec la stéatose ont une expression significativement plus élevée. De manière intéressante, les patients avec résistance à l'insuline ont une diminution de ces expressions. Conclusion : Ces données suggèrent que les gènes des gouttelettes lipidiques sont impliqués dans le développement de la stéatose hépatique chez l'homme et peut-être contribue à la mise en place de la résistance à l'insuline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. Longevity has been attributed to decreased cardiovascular mortality. Subjects with long-lived parents may represent a valuable group to study cardiovascular risk factors (CVRF) associated with longevity, possibly leading to new ways of preventing cardiovascular disease. Purpose: Longevity has been attributed to decreased cardiovascular mortality. Subjects with long-lived parents may represent a valuable group to study cardiovascular risk factors (CVRF) associated with longevity, possibly leading to new ways of preventing cardiovascular disease. Methods: We analyzed data from a population-based sample of 2561 participants (1163 men and 1398 women) aged 55--75 years from the city of Lausanne, Switzerland (CoLaus study). Participants were stratified by the number of parents (0, 1, 2) who survived to 85 years or more. Trend across these strata was assessed using a non-parametric kmean test. The associations of parental age (independent covariate used as a proxy for longevity) with fasting blood glucose, blood pressures, blood lipids, body mass index (BMI), weight, height or liver enzymes (continuous dependent variables) were analyzed using multiple linear regressions. Models were adjusted for age, sex, alcohol consumption, smoking and educational level, and BMI for liver enzymes. Results: For subjects with 0 (N=1298), 1 (N=991) and 2 (N=272) long-lived parents, median BMI (interquartile range) was 25.4 (6.5), 24.9 (6.1) and 23.7 (4.8) kg/m2 in women (P<0.001), and 27.3 (4.8), 27.0 (4.5) and 25.9 (4.9) kg/m2 in men (P=0.04), respectively; median weight was 66.5 (16.1), 65.0 (16.4) and 63.4 (13.7) kg in women (P=0.003), and 81.5 (17.0), 81.4 (16.4) and 80.3 (17.1) kg in men (P=0.36). Median height was 161 (8), 162 (9) and 163 (8) cm in women (P=0.005), and 173 (9), 174 (9) and 174 (11) cm in men (P=0.09). The corresponding medians for AST (Aspartate Aminotransferase) were 31 (13), 29 (11) and 28 (10) U/L (P=0.002), and 28 (17), 27 (14) and 26 (19) U/L for ALT (Alanin Aminotransferase, P=0.053) in men. In multivariable analyses, greater parental longevity was associated with lower BMI, lower weight and taller stature in women (P<0.01) and lower AST in men (P=0.011). No significant associations were observed for the other variables analyzed. Sensitivity analyses restricted to subjects whose parents were dead (N=1844) led to similar results, with even stronger associations of parental longevity with liver enzymes in men. Conclusion: In women, increased parental longevity was associated with smaller BMI, attributable to lower weight and taller stature. In men, the association of increased parental longevity with lower liver enzymes, independently of BMI, suggests that parental longevity may be associated with decreased nonalcoholic fatty liver disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

METHODS. We analyzed data from a population-based sample of 2561 participants (1163 men and 1398 women) aged 55-75 years from the city of Lausanne, Switzerland (CoLaus study). Participants were stratified by the number of parents (0, 1, 2) who survived to 85 years or more. Trend across these strata was assessed using a non-parametric kmean test. The associations of parental age (independent covariate used as a proxy for longevity) with fasting blood glucose, blood pressures, blood lipids, body mass index (BMI), weight, height or liver enzymes (continuous dependent variables) were analyzed using multiple linear regressions. Models were adjusted for age, sex, alcohol consumption, smoking and educational level, and BMI for liver enzymes. RESULTS. For subjects with 0 (N = 1298), 1 (N = 991) and 2 (N = 272) long-lived parents, median BMI (interquartile range) was 25.4 (6.5), 24.9 (6.1) and 23.7 (4.8) kg/m2 in women (P <0.001), and 27.3 (4.8), 27.0 (4.5) and 25.9 (4.9) kg/m2 in men (P = 0.04), respectively; median weight was 66.5 (16.1), 65.0 (16.4) and 63.4 (13.7) kg in women (P = 0.003), and 81.5 (17.0), 81.4 (16.4) and 80.3 (17.1) kg in men (P = 0.36). Median height was 161 (8), 162 (9) and 163 (8) cm in women (P = 0.005) and 173 (9), 174 (9) and 174 (11) cm in men (P = 0.09). The corresponding medians for AST (Aspartate Aminotransferase) were 31 (13), 29 (11) and 28 (10) U/L (P = 0.002), and 28 (17), 27 (14) and 26 (19) U/L for ALT (Alanin Aminotransferase, P = 0.053) in men. In multivariable analyses, greater parental longevity was associated with lower BMI, lower weight and taller stature in women (P < 0.01) and lower AST in men (P = 0.011). No significant associations were observed for the other variables analyzed. Sensitivity analyses restricted to subjects whose parents were dead (N = 1844) led to similar results, with even stronger associations of parental longevity with liver enzymes in men. CONCLUSIONS. In women, increased parental longevity was associated with smaller BMI, attributable to lower weight and taller stature. In men, the association of increased parental longevity with lower liver enzymes, independently of BMI, suggests that parental longevity may be associated with decreased nonalcoholic fatty liver disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Both nutritional and genetic factors are involved in the pathogenesis of nonalcoholic fatty liver disease and insulin resistance. OBJECTIVE: The aim was to assess the effects of fructose, a potent stimulator of hepatic de novo lipogenesis, on intrahepatocellular lipids (IHCLs) and insulin sensitivity in healthy offspring of patients with type 2 diabetes (OffT2D)--a subgroup of individuals prone to metabolic disorders. DESIGN: Sixteen male OffT2D and 8 control subjects were studied in a crossover design after either a 7-d isocaloric diet or a hypercaloric high-fructose diet (3.5 g x kg FFM(-1) x d(-1), +35% energy intake). Hepatic and whole-body insulin sensitivity were assessed with a 2-step hyperinsulinemic euglycemic clamp (0.3 and 1.0 mU x kg(-1) x min(-1)), together with 6,6-[2H2]glucose. IHCLs and intramyocellular lipids (IMCLs) were measured by 1H-magnetic resonance spectroscopy. RESULTS: The OffT2D group had significantly (P < 0.05) higher IHCLs (+94%), total triacylglycerols (+35%), and lower whole-body insulin sensitivity (-27%) than did the control group. The high-fructose diet significantly increased IHCLs (control: +76%; OffT2D: +79%), IMCLs (control: +47%; OffT2D: +24%), VLDL-triacylglycerols (control: +51%; OffT2D: +110%), and fasting hepatic glucose output (control: +4%; OffT2D: +5%). Furthermore, the effects of fructose on VLDL-triacylglycerols were higher in the OffT2D group (group x diet interaction: P < 0.05). CONCLUSIONS: A 7-d high-fructose diet increased ectopic lipid deposition in liver and muscle and fasting VLDL-triacylglycerols and decreased hepatic insulin sensitivity. Fructose-induced alterations in VLDL-triacylglycerols appeared to be of greater magnitude in the OffT2D group, which suggests that these individuals may be more prone to developing dyslipidemia when challenged by high fructose intakes. This trial was registered at clinicaltrials.gov as NCT00523562.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.