38 resultados para Multi-objective evolutionary algorithm
em Université de Lausanne, Switzerland
Resumo:
Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.
Resumo:
In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.
Resumo:
3 Summary 3. 1 English The pharmaceutical industry has been facing several challenges during the last years, and the optimization of their drug discovery pipeline is believed to be the only viable solution. High-throughput techniques do participate actively to this optimization, especially when complemented by computational approaches aiming at rationalizing the enormous amount of information that they can produce. In siiico techniques, such as virtual screening or rational drug design, are now routinely used to guide drug discovery. Both heavily rely on the prediction of the molecular interaction (docking) occurring between drug-like molecules and a therapeutically relevant target. Several softwares are available to this end, but despite the very promising picture drawn in most benchmarks, they still hold several hidden weaknesses. As pointed out in several recent reviews, the docking problem is far from being solved, and there is now a need for methods able to identify binding modes with a high accuracy, which is essential to reliably compute the binding free energy of the ligand. This quantity is directly linked to its affinity and can be related to its biological activity. Accurate docking algorithms are thus critical for both the discovery and the rational optimization of new drugs. In this thesis, a new docking software aiming at this goal is presented, EADock. It uses a hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with .the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 R around the center of mass of the ligand position in the crystal structure, and conversely to other benchmarks, our algorithms was fed with optimized ligand positions up to 10 A root mean square deviation 2MSD) from the crystal structure. This validation illustrates the efficiency of our sampling heuristic, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best-ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures in this benchmark could be explained by the presence of crystal contacts in the experimental structure. EADock has been used to understand molecular interactions involved in the regulation of the Na,K ATPase, and in the activation of the nuclear hormone peroxisome proliferatoractivated receptors a (PPARa). It also helped to understand the action of common pollutants (phthalates) on PPARy, and the impact of biotransformations of the anticancer drug Imatinib (Gleevec®) on its binding mode to the Bcr-Abl tyrosine kinase. Finally, a fragment-based rational drug design approach using EADock was developed, and led to the successful design of new peptidic ligands for the a5ß1 integrin, and for the human PPARa. In both cases, the designed peptides presented activities comparable to that of well-established ligands such as the anticancer drug Cilengitide and Wy14,643, respectively. 3.2 French Les récentes difficultés de l'industrie pharmaceutique ne semblent pouvoir se résoudre que par l'optimisation de leur processus de développement de médicaments. Cette dernière implique de plus en plus. de techniques dites "haut-débit", particulièrement efficaces lorsqu'elles sont couplées aux outils informatiques permettant de gérer la masse de données produite. Désormais, les approches in silico telles que le criblage virtuel ou la conception rationnelle de nouvelles molécules sont utilisées couramment. Toutes deux reposent sur la capacité à prédire les détails de l'interaction moléculaire entre une molécule ressemblant à un principe actif (PA) et une protéine cible ayant un intérêt thérapeutique. Les comparatifs de logiciels s'attaquant à cette prédiction sont flatteurs, mais plusieurs problèmes subsistent. La littérature récente tend à remettre en cause leur fiabilité, affirmant l'émergence .d'un besoin pour des approches plus précises du mode d'interaction. Cette précision est essentielle au calcul de l'énergie libre de liaison, qui est directement liée à l'affinité du PA potentiel pour la protéine cible, et indirectement liée à son activité biologique. Une prédiction précise est d'une importance toute particulière pour la découverte et l'optimisation de nouvelles molécules actives. Cette thèse présente un nouveau logiciel, EADock, mettant en avant une telle précision. Cet algorithme évolutionnaire hybride utilise deux pressions de sélections, combinées à une gestion de la diversité sophistiquée. EADock repose sur CHARMM pour les calculs d'énergie et la gestion des coordonnées atomiques. Sa validation a été effectuée sur 37 complexes protéine-ligand cristallisés, incluant 11 protéines différentes. L'espace de recherche a été étendu à une sphère de 151 de rayon autour du centre de masse du ligand cristallisé, et contrairement aux comparatifs habituels, l'algorithme est parti de solutions optimisées présentant un RMSD jusqu'à 10 R par rapport à la structure cristalline. Cette validation a permis de mettre en évidence l'efficacité de notre heuristique de recherche car des modes d'interactions présentant un RMSD inférieur à 2 R par rapport à la structure cristalline ont été classés premier pour 68% des complexes. Lorsque les cinq meilleures solutions sont prises en compte, le taux de succès grimpe à 78%, et 92% lorsque la totalité de la dernière génération est prise en compte. La plupart des erreurs de prédiction sont imputables à la présence de contacts cristallins. Depuis, EADock a été utilisé pour comprendre les mécanismes moléculaires impliqués dans la régulation de la Na,K ATPase et dans l'activation du peroxisome proliferatoractivated receptor a (PPARa). Il a également permis de décrire l'interaction de polluants couramment rencontrés sur PPARy, ainsi que l'influence de la métabolisation de l'Imatinib (PA anticancéreux) sur la fixation à la kinase Bcr-Abl. Une approche basée sur la prédiction des interactions de fragments moléculaires avec protéine cible est également proposée. Elle a permis la découverte de nouveaux ligands peptidiques de PPARa et de l'intégrine a5ß1. Dans les deux cas, l'activité de ces nouveaux peptides est comparable à celles de ligands bien établis, comme le Wy14,643 pour le premier, et le Cilengitide (PA anticancéreux) pour la seconde.
Resumo:
Abstract The main objective of this work is to show how the choice of the temporal dimension and of the spatial structure of the population influences an artificial evolutionary process. In the field of Artificial Evolution we can observe a common trend in synchronously evolv¬ing panmictic populations, i.e., populations in which any individual can be recombined with any other individual. Already in the '90s, the works of Spiessens and Manderick, Sarma and De Jong, and Gorges-Schleuter have pointed out that, if a population is struc¬tured according to a mono- or bi-dimensional regular lattice, the evolutionary process shows a different dynamic with respect to the panmictic case. In particular, Sarma and De Jong have studied the selection pressure (i.e., the diffusion of a best individual when the only selection operator is active) induced by a regular bi-dimensional structure of the population, proposing a logistic modeling of the selection pressure curves. This model supposes that the diffusion of a best individual in a population follows an exponential law. We show that such a model is inadequate to describe the process, since the growth speed must be quadratic or sub-quadratic in the case of a bi-dimensional regular lattice. New linear and sub-quadratic models are proposed for modeling the selection pressure curves in, respectively, mono- and bi-dimensional regu¬lar structures. These models are extended to describe the process when asynchronous evolutions are employed. Different dynamics of the populations imply different search strategies of the resulting algorithm, when the evolutionary process is used to solve optimisation problems. A benchmark of both discrete and continuous test problems is used to study the search characteristics of the different topologies and updates of the populations. In the last decade, the pioneering studies of Watts and Strogatz have shown that most real networks, both in the biological and sociological worlds as well as in man-made structures, have mathematical properties that set them apart from regular and random structures. In particular, they introduced the concepts of small-world graphs, and they showed that this new family of structures has interesting computing capabilities. Populations structured according to these new topologies are proposed, and their evolutionary dynamics are studied and modeled. We also propose asynchronous evolutions for these structures, and the resulting evolutionary behaviors are investigated. Many man-made networks have grown, and are still growing incrementally, and explanations have been proposed for their actual shape, such as Albert and Barabasi's preferential attachment growth rule. However, many actual networks seem to have undergone some kind of Darwinian variation and selection. Thus, how these networks might have come to be selected is an interesting yet unanswered question. In the last part of this work, we show how a simple evolutionary algorithm can enable the emrgence o these kinds of structures for two prototypical problems of the automata networks world, the majority classification and the synchronisation problems. Synopsis L'objectif principal de ce travail est de montrer l'influence du choix de la dimension temporelle et de la structure spatiale d'une population sur un processus évolutionnaire artificiel. Dans le domaine de l'Evolution Artificielle on peut observer une tendence à évoluer d'une façon synchrone des populations panmictiques, où chaque individu peut être récombiné avec tout autre individu dans la population. Déjà dans les année '90, Spiessens et Manderick, Sarma et De Jong, et Gorges-Schleuter ont observé que, si une population possède une structure régulière mono- ou bi-dimensionnelle, le processus évolutionnaire montre une dynamique différente de celle d'une population panmictique. En particulier, Sarma et De Jong ont étudié la pression de sélection (c-à-d la diffusion d'un individu optimal quand seul l'opérateur de sélection est actif) induite par une structure régulière bi-dimensionnelle de la population, proposant une modélisation logistique des courbes de pression de sélection. Ce modèle suppose que la diffusion d'un individu optimal suit une loi exponentielle. On montre que ce modèle est inadéquat pour décrire ce phénomène, étant donné que la vitesse de croissance doit obéir à une loi quadratique ou sous-quadratique dans le cas d'une structure régulière bi-dimensionnelle. De nouveaux modèles linéaires et sous-quadratique sont proposés pour des structures mono- et bi-dimensionnelles. Ces modèles sont étendus pour décrire des processus évolutionnaires asynchrones. Différentes dynamiques de la population impliquent strategies différentes de recherche de l'algorithme résultant lorsque le processus évolutionnaire est utilisé pour résoudre des problèmes d'optimisation. Un ensemble de problèmes discrets et continus est utilisé pour étudier les charactéristiques de recherche des différentes topologies et mises à jour des populations. Ces dernières années, les études de Watts et Strogatz ont montré que beaucoup de réseaux, aussi bien dans les mondes biologiques et sociologiques que dans les structures produites par l'homme, ont des propriétés mathématiques qui les séparent à la fois des structures régulières et des structures aléatoires. En particulier, ils ont introduit la notion de graphe sm,all-world et ont montré que cette nouvelle famille de structures possède des intéressantes propriétés dynamiques. Des populations ayant ces nouvelles topologies sont proposés, et leurs dynamiques évolutionnaires sont étudiées et modélisées. Pour des populations ayant ces structures, des méthodes d'évolution asynchrone sont proposées, et la dynamique résultante est étudiée. Beaucoup de réseaux produits par l'homme se sont formés d'une façon incrémentale, et des explications pour leur forme actuelle ont été proposées, comme le preferential attachment de Albert et Barabàsi. Toutefois, beaucoup de réseaux existants doivent être le produit d'un processus de variation et sélection darwiniennes. Ainsi, la façon dont ces structures ont pu être sélectionnées est une question intéressante restée sans réponse. Dans la dernière partie de ce travail, on montre comment un simple processus évolutif artificiel permet à ce type de topologies d'émerger dans le cas de deux problèmes prototypiques des réseaux d'automates, les tâches de densité et de synchronisation.
Resumo:
Optimizing collective behavior in multiagent systems requires algorithms to find not only appropriate individual behaviors but also a suitable composition of agents within a team. Over the last two decades, evolutionary methods have emerged as a promising approach for the design of agents and their compositions into teams. The choice of a crossover operator that facilitates the evolution of optimal team composition is recognized to be crucial, but so far, it has never been thoroughly quantified. Here, we highlight the limitations of two different crossover operators that exchange entire agents between teams: restricted agent swapping (RAS) that exchanges only corresponding agents between teams and free agent swapping (FAS) that allows an arbitrary exchange of agents. Our results show that RAS suffers from premature convergence, whereas FAS entails insufficient convergence. Consequently, in both cases, the exploration and exploitation aspects of the evolutionary algorithm are not well balanced resulting in the evolution of suboptimal team compositions. To overcome this problem, we propose combining the two methods. Our approach first applies FAS to explore the search space and then RAS to exploit it. This mixed approach is a much more efficient strategy for the evolution of team compositions compared to either strategy on its own. Our results suggest that such a mixed agent-swapping algorithm should always be preferred whenever the optimal composition of individuals in a multiagent system is unknown.
Resumo:
The implicit projection algorithm of isotropic plasticity is extended to an objective anisotropic elastic perfectly plastic model. The recursion formula developed to project the trial stress on the yield surface, is applicable to any non linear elastic law and any plastic yield function.A curvilinear transverse isotropic model based on a quadratic elastic potential and on Hill's quadratic yield criterion is then developed and implemented in a computer program for bone mechanics perspectives. The paper concludes with a numerical study of a schematic bone-prosthesis system to illustrate the potential of the model.
Resumo:
In this paper we unify, simplify, and extend previous work on the evolutionary dynamics of symmetric N-player matrix games with two pure strategies. In such games, gains from switching strategies depend, in general, on how many other individuals in the group play a given strategy. As a consequence, the gain function determining the gradient of selection can be a polynomial of degree N-1. In order to deal with the intricacy of the resulting evolutionary dynamics, we make use of the theory of polynomials in Bernstein form. This theory implies a tight link between the sign pattern of the gains from switching on the one hand and the number and stability of the rest points of the replicator dynamics on the other hand. While this relationship is a general one, it is most informative if gains from switching have at most two sign changes, as is the case for most multi-player matrix games considered in the literature. We demonstrate that previous results for public goods games are easily recovered and extended using this observation. Further examples illustrate how focusing on the sign pattern of the gains from switching obviates the need for a more involved analysis.
Resumo:
BACKGROUND: The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). METHODS: Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. RESULTS: The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. CONCLUSION: Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host.
Resumo:
The objective of this work was to develop an easily applicable technique and a standardized protocol for high-quality post-mortem angiography. This protocol should (1) increase the radiological interpretation by decreasing artifacts due to the perfusion and by reaching a complete filling of the vascular system and (2) ease and standardize the execution of the examination. To this aim, 45 human corpses were investigated by post-mortem computed tomography (CT) angiography using different perfusion protocols, a modified heart-lung machine and a new contrast agent mixture, specifically developed for post-mortem investigations. The quality of the CT angiographies was evaluated radiologically by observing the filling of the vascular system and assessing the interpretability of the resulting images and by comparing radiological diagnoses to conventional autopsy conclusions. Post-mortem angiography yielded satisfactory results provided that the volumes of the injected contrast agent mixture were high enough to completely fill the vascular system. In order to avoid artifacts due to the post-mortem perfusion, a minimum of three angiographic phases and one native scan had to be performed. These findings were taken into account to develop a protocol for quality post-mortem CT angiography that minimizes the risk of radiological misinterpretation. The proposed protocol is easy applicable in a standardized way and yields high-quality radiologically interpretable visualization of the vascular system in post-mortem investigations.
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances.
Resumo:
OBJECTIVE: Mild neurocognitive disorders (MND) affect a subset of HIV+ patients under effective combination antiretroviral therapy (cART). In this study, we used an innovative multi-contrast magnetic resonance imaging (MRI) approach at high-field to assess the presence of micro-structural brain alterations in MND+ patients. METHODS: We enrolled 17 MND+ and 19 MND- patients with undetectable HIV-1 RNA and 19 healthy controls (HC). MRI acquisitions at 3T included: MP2RAGE for T1 relaxation times, Magnetization Transfer (MT), T2* and Susceptibility Weighted Imaging (SWI) to probe micro-structural integrity and iron deposition in the brain. Statistical analysis used permutation-based tests and correction for family-wise error rate. Multiple regression analysis was performed between MRI data and (i) neuropsychological results (ii) HIV infection characteristics. A linear discriminant analysis (LDA) based on MRI data was performed between MND+ and MND- patients and cross-validated with a leave-one-out test. RESULTS: Our data revealed loss of structural integrity and micro-oedema in MND+ compared to HC in the global white and cortical gray matter, as well as in the thalamus and basal ganglia. Multiple regression analysis showed a significant influence of sub-cortical nuclei alterations on the executive index of MND+ patients (p = 0.04 he and R(2) = 95.2). The LDA distinguished MND+ and MND- patients with a classification quality of 73% after cross-validation. CONCLUSION: Our study shows micro-structural brain tissue alterations in MND+ patients under effective therapy and suggests that multi-contrast MRI at high field is a powerful approach to discriminate between HIV+ patients on cART with and without mild neurocognitive deficits.
Resumo:
Introduction: Mantle cell lymphoma (MCL) accounts for 6% of all B-cell lymphomas and remains incurable for most patients. Those who relapse after first line therapy or hematopoietic stem cell transplantation have a dismal prognosis with short response duration after salvage therapy. On a molecular level, MCL is characterised by the translocation t[11;14] leading to Cyclin D1 overexpression. Cyclin D1 is downstream of the mammalian target of rapamycin (mTOR) kinase and can be effectively blocked by mTOR inhibitors such as temsirolimus. We set out to define the single agent activity of the orally available mTOR inhibitor everolimus (RAD001) in a prospective, multi-centre trial in patients with relapsed or refractory MCL (NCT00516412). The study was performed in collaboration with the EU-MCL network. Methods: Eligible patients with histologically/cytologically confirmed relapsed (not more than 3 prior lines of systemic treatment) or refractory MCL received everolimus 10 mg orally daily on day 1 - 28 of each cycle (4 weeks) for 6 cycles or until disease progression. The primary endpoint was the best objective response with adverse reactions, time to progression (TTP), time to treatment failure, response duration and molecular response as secondary endpoints. A response rate of 10% was considered uninteresting and, conversely, promising if 30%. The required sample size was 35 pts using the Simon's optimal two-stage design with 90% power and 5% significance. Results: A total of 36 patients with 35 evaluable patients from 19 centers were enrolled between August 2007 and January 2010. The median age was 69.4 years (range 40.1 to 84.9 years), with 22 males and 13 females. Thirty patients presented with relapsed and 5 with refractory MCL with a median of two prior therapies. Treatment was generally well tolerated with anemia (11%), thrombocytopenia (11%), neutropenia (8%), diarrhea (3%) and fatigue (3%) being the most frequent complications of CTC grade III or higher. Eighteen patients received 6 or more cycles of everolimus treatment. The objective response rate was 20% (95% CI: 8-37%) with 2 CR, 5 PR, 17 SD, and 11 PD. At a median follow-up of 6 months, TTP was 5.45 months (95% CI: 2.8-8.2 months) for the entire population and 10.6 months for the 18 patients receiving 6 or more cycles of treatment. Conclusion: This study demonstrates that single agent everolimus 10 mg once daily orally is well tolerated. The null hypothesis of inactivity could be rejected indicating a moderate anti-lymphoma activity in relapsed/refractory MCL. Further studies of either everolimus in combination with chemotherapy or as single agent for maintenance treatment are warranted in MCL.
Resumo:
To date, state-of-the-art seismic material parameter estimates from multi-component sea-bed seismic data are based on the assumption that the sea-bed consists of a fully elastic half-space. In reality, however, the shallow sea-bed generally consists of soft, unconsolidated sediments that are characterized by strong to very strong seismic attenuation. To explore the potential implications, we apply a state-of-the-art elastic decomposition algorithm to synthetic data for a range of canonical sea-bed models consisting of a viscoelastic half-space of varying attenuation. We find that in the presence of strong seismic attenuation, as quantified by Q-values of 10 or less, significant errors arise in the conventional elastic estimation of seismic properties. Tests on synthetic data indicate that these errors can be largely avoided by accounting for the inherent attenuation of the seafloor when estimating the seismic parameters. This can be achieved by replacing the real-valued expressions for the elastic moduli in the governing equations in the parameter estimation by their complex-valued viscoelastic equivalents. The practical application of our parameter procedure yields realistic estimates of the elastic seismic material properties of the shallow sea-bed, while the corresponding Q-estimates seem to be biased towards too low values, particularly for S-waves. Given that the estimation of inelastic material parameters is notoriously difficult, particularly in the immediate vicinity of the sea-bed, this is expected to be of interest and importance for civil and ocean engineering purposes.