67 resultados para Mtt Assay
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: Corticosteroids have recorded beneficial clinical effects and are widely used in medicine. In ophthalmology, besides their treatment benefits, side effects, including ocular toxicity have been observed especially when intraocular delivery is used. The mechanism of these toxic events remains, however, poorly understood. In our present study, we investigated the mechanisms and potential pathways of corticosteroid-induced retinal cell death. METHODS: Rats were sacrificed 24 h and 8 days after an intravitreous injection of 1 microl (40 microg) of Kenacort Retard. The eyes were processed for ultra structure analysis and detection of activated caspase-3, cytochrome-C, apoptosis-inducing factor (AIF), LEI-L-Dnase II, terminal transferase dUTP nick end labeling (TUNEL), and microtubule-associated protein 1-light chain 3 (MAP-LC3). In vitro, rat retinal pigment epithelial cells (RPE), retinal Müller glial cells (RMG) and human ARPE-19 cells were treated with triamcinolone acetonide (TA) or other glucocorticoids. Cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) assay and cell counts. Nuclei staining, TUNEL assay, annexin-V binding, activated caspase-3 and lactate dehydrogenase (LDH) production characterized cell death. Localization of cytochrome-C, AIF, LEI-and L-Dnase II, and staining with MAP-LC3 or monodansylcadaverine were also carried out. Finally, ARPE-19 cells transfected with AIP-1/Alix were exposed to TA. RESULTS: In vitro incubation of retinal cell in the presence of corticosteroids induced a specific and dose-dependent reduction of cell viability. These toxic events were not associated with the anti-inflammatory activity of these compounds but depended on the hydro solubility of their formulation. Before cell death, extensive cytoplasmic vacuolization was observed in the retinal pigment epithelial (RPE) cells in vivo and in vitro. The cells however, did not show known caspase-dependent or caspase-independent apoptotic reactions. These intracellular vacuoles were negative for MAP-LC3 but some stained positive for monodansylcadaverine. Furthermore, over expression of AIP-1/Alix inhibited RPE cell death. CONCLUSIONS: These observations suggest that corticosteroid-induced retinal cell death may be carried out mainly through a paraptosis pathway.
Resumo:
Bone substitute materials allowing trans-scaffold migration and in-scaffold survival of human bone-derived cells are mandatory for development of cell-engineered permanent implants to repair bone defects. In this study, we evaluated the influence on human bone-derived cells of the material composition and microstructure of foam scaffolds of calcium aluminate. The scaffolds were prepared using a direct foaming method allowing wide-range tailoring of the microstructure for pore size and pore openings. Human fetal osteoblasts (osteo-progenitors) attached to the scaffolds, migrated across the entire bioceramic depending on the scaffold pore size, colonized, and survived in the porous material for at least 6 weeks. The long-term biocompatibility of the scaffold material for human bone-derived cells was evidenced by in-scaffold determination of cell metabolic activity using a modified MTT assay, a repeated WST-1 assay, and scanning electron microscopy. Finally, we demonstrated that the osteo-progenitors can be covalently bound to the scaffolds using biocompatible click chemistry, thus enhancing the rapid adhesion of the cells to the scaffolds. Therefore, the different microstructures of the foams influenced the migratory potential of the cells, but not cell viability. Scaffolds allow covalent biocompatible chemical binding of the cells to the materials, either localized or widespread integration of the scaffolds for cell-engineered implants.
Resumo:
BACKGROUND: 5,10,15,20-Tetrakis(m-hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy (PDT) has shown insufficient tumor selectivity for the treatment of pleural mesothelioma. Tumor selectivity of mTHPC-PDT may be enhanced in the presence of the TAT-RasGAP(317-326) peptide which has the potential to specifically sensitize tumor cells to cytostatic agents. MATERIALS AND METHODS: H-meso-1 and human fibroblast cell cultures, respectively, were exposed to two different mTHPC doses followed by light delivery with and without TAT-RasGAP(317-326) administration. mTHPC was added to the cultures at a concentration of 0.04microg/ml and 0.10microg/ml, respectively, 24h before laser light illumination at 652nm (3J/cm(2), 40mW/cm(2)). TAT-RasGAP(317-326) was added to the cultures immediately after light delivery at a concentration of 20microM. The apoptosis rate was determined by scoring the cells displaying pycnotic nuclei. Cell viability was measured by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: Light delivery associated with 0.04microg/ml mTHPC resulted in a significantly higher apoptosis rate in the presence of TAT-RasGAP(317-326) than without in H-meso-1 cells (p<0.05) but not in fibroblasts. In contrast, 1.0microg/ml mTHPC and light resulted in a significantly higher apoptosis rate in both H-meso-1 cells and fibroblasts as compared to controls (p<0.05) but the addition of TAT-RasGAP(317-326) did not lead to a further significant increase of the apoptosis rate of both H-meso-1 cells and fibroblasts as compared to mTHPC and light delivery alone. CONCLUSION: TAT-RasGAP(317-326) selectively enhanced the effect of mTHPC and light delivery on H-meso-1 cells but not on fibroblasts. However, this effect was mTHPC dose-dependent and occurred only at a low sensitizer dose.
Resumo:
Given the multiplicity of nanoparticles (NPs), there is a requirement to develop screening strategies to evaluate their toxicity. Within the EU-funded FP7 NanoTEST project, a panel of medically relevant NPs has been used to develop alternative testing strategies of NPs used in medical diagnostics. As conventional toxicity tests cannot necessarily be directly applied to NPs in the same manner as for soluble chemicals and drugs, we determined the extent of interference of NPs with each assay process and components. In this study, we fully characterized the panel of NP suspensions used in this project (poly(lactic-co-glycolic acid)-polyethylene oxide [PLGA-PEO], TiO2, SiO2, and uncoated and oleic-acid coated Fe3O4) and showed that many NP characteristics (composition, size, coatings, and agglomeration) interfere with a range of in vitro cytotoxicity assays (WST-1, MTT, lactate dehydrogenase, neutral red, propidium iodide, (3)H-thymidine incorporation, and cell counting), pro-inflammatory response evaluation (ELISA for GM-CSF, IL-6, and IL-8), and oxidative stress detection (monoBromoBimane, dichlorofluorescein, and NO assays). Interferences were assay specific as well as NP specific. We propose how to integrate and avoid interference with testing systems as a first step of a screening strategy for biomedical NPs.
Resumo:
We describe a calorimetric assay for detection of voriconazole-resistant Aspergillus fumigatus within 8 h. Among 27 genetically distinct strains, all 21 resistant and all 6 susceptible strains were correctly identified by measurement of fungal heat production in the presence of voriconazole. This proof-of-concept study demonstrates the potential of microcalorimetry for rapid detection of azole resistance in A. fumigatus.
Resumo:
BACKGROUND: Invasive fungal infections (IFIs) are life-threatening complications in patients with hemato-oncological malignancies, and early diagnosis is crucial for outcome. The compound 1,3-β-D-glucan (BG), a cell wall component of most fungal species, can be detected in blood during IFI. Four commercial BG antigenemia assays are available (Fungitell, Fungitec-G, Wako, and Maruha). This meta-analysis from the Third European Conference on Infections in Leukemia (ECIL-3) assessed the performance of BG assays for the diagnosis of IFI in hemato-oncological patients. METHODS: Studies reporting the performance of BG antigenemia assays for the diagnosis of IFI (European Organization for Research and Treatment of Cancer and Mycoses Study Group criteria) in hemato-oncological patients were identified. The analysis was focused on high-quality cohort studies with exclusion of case-control studies. Meta-analysis was performed by conventional meta-analytical pooling and bivariate analysis. RESULTS: Six cohort studies were included (1771 adult patients with 414 IFIs of which 215 were proven or probable). Similar performance was observed among the different BG assays. For the cutoff recommended by the manufacturer, the diagnostic performance of the BG assay in proven or probable IFI was better with 2 consecutive positive test results (diagnostic odds ratio for 2 consecutive vs one single positive results, 111.8 [95% confidence interval {CI}, 38.6-324.1] vs 16.3 [95% CI, 6.5-40.8], respectively; heterogeneity index for 2 consecutive vs one single positive results, 0% vs 72.6%, respectively). For 2 consecutive tests, sensitivity and specificity were 49.6% (95% CI, 34.0%-65.3%) and 98.9% (95% CI, 97.4%-99.5%), respectively. Estimated positive and negative predictive values for an IFI prevalence of 10% were 83.5% and 94.6%, respectively. CONCLUSIONS: Different BG assays have similar accuracy for the diagnosis of IFI in hemato-oncological patients. Two consecutive positive antigenemia assays have very high specificity, positive predictive value, and negative predictive value. Because sensitivity is low, the test needs to be combined with clinical, radiological, and microbiological findings.
Resumo:
BACKGROUND: Enterovirus (EV) is the most frequent cause of aseptic meningitis (AM). Lack of microbiological documentation results in unnecessary antimicrobial therapy and hospitalization. OBJECTIVES: To assess the impact of rapid EV detection in cerebrospinal fluid (CSF) by a fully-automated PCR (GeneXpert EV assay, GXEA) on the management of AM. STUDY DESIGN: Observational study in adult patients with AM. Three groups were analyzed according to EV documentation in CSF: group A=no PCR or negative PCR (n=17), group B=positive real-time PCR (n=20), and group C=positive GXEA (n=22). Clinical, laboratory and health-care costs data were compared. RESULTS: Clinical characteristics were similar in the 3 groups. Median turn-around time of EV PCR decreased from 60h (IQR (interquartile range) 44-87) in group B to 5h (IQR 4-11) in group C (p<0.0001). Median duration of antibiotics was 1 (IQR 0-6), 1 (0-1.9), and 0.5 days (single dose) in groups A, B, and C, respectively (p<0.001). Median length of hospitalization was 4 days (2.5-7.5), 2 (1-3.7), and 0.5 (0.3-0.7), respectively (p<0.001). Median hospitalization costs were $5458 (2676-6274) in group A, $2796 (2062-5726) in group B, and $921 (765-1230) in group C (p<0.0001). CONCLUSIONS: Rapid EV detection in CSF by a fully-automated PCR improves management of AM by significantly reducing antibiotic use, hospitalization length and costs.
Resumo:
Cytomegalovirus (CMV) infection has historically been a major complication among immunocompromised patients, such as solid-organ and stem-cell transplant recipients and patients with advanced HIV infection. While the introduction of antiretroviral therapy has almost eradicated CMV infection in HIV-infected patients, CMV disease remains a significant problem in transplant recipients once antiviral prophylaxis is discontinued. QuantiFERON(®)-CMV allows the assessment of cellular immunity against CMV by detecting the production of IFN-γ following in vitro stimulation with CMV antigens. Preliminary studies have shown a correlation between a lack of detectable cell-mediated immunity measured by the QuantiFERON-CMV assay and a higher incidence of CMV infection and disease in immunocompromised patients. Measurement of cell-mediated immunity against CMV appears to be a promising strategy to identify patients at highest risk for the development of CMV disease and, therefore, to individualize preventive strategies for CMV in transplant recipients.
Resumo:
The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.
Resumo:
Dans cette étude, nous avons testé la performance diagnostique d'une nouvelle technique d'analyse multiplexée qui permet la détection d'anticorps de différentes spécificités dans la même réaction. En l'absence de gold standard, nous avons choisi de comparer la performance diagnostique de l'analyse avec deux méthodes de référance que sont l'IF et EIA, et avec un consensus déterminé selon une règle de majorité entre les trois méthodes.¦393 sérums analysés par IF, conservés par congélation, ont été décongelés pour être analysés par EIA et BBA. Pour chaque sérum, les anticorps recherchés ont été les anti-VCA (Viral Capsid Antigen) IgM, anti-VCA IgG et anti-EBNA (Epstein-Barr Nuclear Associated) IgG. Les échantillons ont été classés en cinq groupes selon les résultats de l'IF : séronégatifs, infections aiguës, infections anciennes et deux types d'indéterminés.¦Pour chaque méthode, le résultat numérique (index ou titre) des analyses est converti en termes de positif, négatif ou douteux. Pour le résultat de chaque type d'anticorps, un consensus est établi selon une règle de majorité entre les trois méthodes, permettant une interprétation du stade de l'infection. Puis l'interprétation de chacune des méthodes a été comparée au consensus. Nous avons également comparé les trois méthodes les unes aux autres concernant la détection des anticorps.¦Globalement, nous observons une bonne corrélation qualitative entre les trois approches pour détecter les anti-VCA IgG et IgM. Pour pour les anti-EBNA IgG, il y a une divergence notable entre l'IF et les deux autres méthodes, l'IF apparaissant moins sensible que les autres méthodes, résultant en un nombre accru d'interprétations indéterminées du stade de l'infection.¦L'origine de cette divergence ne peut être due à une perte d'anticorps liée au stockage de longue durée des échantillons. En effet, EIA et BBA restent plus sensibles que IF, dont l'analyse a été faite sur des sérums frais.¦Cette divergence ne semble pas non plus être due aux différents antigènes utilisés par les trois méthodes. EIA et BBA utilisent le même antigène recombinant EBNA-1, alors que l'IF utilise des "cellules lymphoïdes choisies pour leur production sélective d'antigènes EBNA". Ces cellules sont probablement des cellules infectées par EBV qui devraient exprimer plus d'antigènes de latence que seul EBNA-1. Cette différence devrait donc plutôt en principe résulter en une meilleure sensibilité de l'IF par rapport aux deux autres méthodes.¦Les anti-EBNA IgG peuvent disparaître chez les patients immunocompromis chez qui se produit une réactivation d'EBV. Nous avons donc recherché le status immunitaire des patients du groupe dont les sérums étaient négatifs pour anti-EBNA IgG en IF et positifs par les autres méthodes: seulement 28 des 70 patients étaient immunocompromis.¦Par conséquent, il est probable que dans la majorité de ces résultats discordants, les anticorps anti-EBNA IgG détectés par BBA et EIA sont de vrais positifs non décelés par l'IF.¦En conclusion, BBA est meilleur que la méthode de référance qu'est l'IF, et est égal à EIA en ce qui concerne la performance diagnostique. En outre, ces deux nouvelles méthodes offrent une économie de temps en raison de manipulations moindres, et ne requièrent aucune formation en microscopie à fluorescence. Elles sont également plus économes en échantillons que IF. BBA a l'avantage de n'avoir besoin que de deux analyses pour donner un diagnostique, alors que IF et EIA ont en besoin d'une par anticorps. Enfin, BBA dispose de contrôles internes permettant de reconnaître les liaisons non antigène-spécifiques des anticorps. Par contre, BBA nécessite l'achat d'un lecteur par cytométrie de flux assez coûteux.
Resumo:
During a 9-month period, 217 patients were newly diagnosed as methicillin-resistant Staphylococcus aureus (MRSA) carriers by using a commercial rapid PCR-based test (GeneXpert). However, no MRSA was recovered by culturing the second swab in 61 of these patients. Further analyses showed that 28 (12.9%) of the patients harbored S. aureus isolates with a staphylococcal cassette chromosome element lacking the mecA gene and were thus incorrectly determined to be MRSA carriers.
Resumo:
Dermatophytes are the main cause of superficial mycoses. These fungi have the capacity to invade keratinized tissue of humans or animals to produce infections that are generally restricted to the corneocytes of the skin, hair, and nails. Nevertheless, it is common to obtain negative results from fungal cultures of dermatological specimens where direct mycological examination showed fungal elements (30-40%). However, correct identification of the isolated dermatophytes from Tinea is important to choose the appropriate treatment. Therefore, we aim to develop a rapid polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on 28S rDNA that is able to identify dermatophytes species in positive dermatological samples. PCR-RFLP identification of dermatophytes in skin or hair allowed validation of the results obtained in culture. It was also possible to identify the infectious dermatophytes when direct hair/ skin mycological examination showed fungal elements, but negative results were obtained from fungal culture. As a conclusion, PCR methods may provide significant benefits in the rapid diagnosis of Tinea. First, there is an increase in sensitivity of dermatophytes identification when enough material is available. Secondly, identification of the infecting agent can be obtained in 24 hours with PCR-RFLP or sequencing, whereas results from fungal cultures can take 2-3 weeks.
Resumo:
Lymphocytic choriomeningitis virus (LCMV) is a rare cause of central nervous system disease in humans. Screening by real-time RT-PCR assay is of interest in the case of aseptic meningitis of unknown etiology. A specific LCMV real-time RT-PCR assay, based on the detection of genomic sequences of the viral nucleoprotein (NP), was developed to assess the presence of LCMV in cerebrospinal fluids (CSF) sent for viral screening to a Swiss university hospital laboratory. A 10-fold dilution series assay using a plasmid containing the cDNA of the viral NP of the LCMV isolate Armstrong (Arm) 53b demonstrated the high sensitivity of the assay with a lowest detection limit of ≤50 copies per reaction. High sensitivity was confirmed by dilution series assays in a pool of human CSF using four different LCMV isolates (Arm53b, WE54, Traub and E350) with observed detection limits of ≤10PFU/ml (Arm53b and WE54) and 1PFU/ml (Traub and E350). Analysis of 130 CSF showed no cases of acute infection. The absence of positive cases was confirmed by a published PCR assay detecting all Old World arenaviruses. This study validates a specific and sensitive real-time RT-PCR assay for the diagnosis of LCMV infections. Results showed that LCMV infections are extremely rare in hospitalized patients western in Switzerland.