91 resultados para Mechanism of antimicrobial activity
em Université de Lausanne, Switzerland
Resumo:
Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials.
Resumo:
The pharmacological activity of several amphiphilic drugs is often related to their ability to interact with biological membranes. Propranolol is an efficient multidrug resistance (MDR) modulator; it is a nonselective beta-blocker and is thought to reduce hypertension by decreasing the cardiac frequency and thus blood pressure. It is used in drug delivery studies in order to treat systemic hypertension. We are interested in the interaction of propranolol with artificial membranes, as liposomes of controllable size are used as biocompatible and protective structures to encapsulate labile molecules, such as proteins, nucleic acids or drugs, for pharmaceutical, cosmetic or chemical applications. We present here a study of the interaction of propranolol, a cationic surfactant, with pure egg phosphatidylcholine (EPC) vesicles. The gradual transition from liposome to micelle of EPC vesicles in the presence of propranolol was monitored by time-resolved electron cryo-microscopy (cryo-EM) under different experimental conditions. The liposome-drug interaction was studied with varying drug/lipid (D/L) ratios and different stages were captured by direct thin-film vitrification. The time-series cryo-EM data clearly illustrate the mechanism of action of propranolol on the liposome structure: the drug disrupts the lipid bilayer by perturbing the local organization of the phospholipids. This is followed by the formation of thread-like micelles, also called worm-like micelles (WLM), and ends with the formation of spherical (globular) micelles. The overall reaction is slow, with the process taking almost two hours to be completed. The effect of a monovalent salt was also investigated by repeating the lipid-surfactant interaction experiments in the presence of KCl as an additive to the lipid/drug suspension. When KCl was added in the presence of propranolol the overall reaction was the same but with slower kinetics, suggesting that this monovalent salt affects the general lipid-to-micelle transition by stabilizing the membrane, presumably by binding to the carbonyl chains of the phosphatidylcholine.
Resumo:
Mitochondria are essential in cellular stress responses. Mitochondrial output to environmental stress is a major factor in metabolic adaptation and is regulated by a complex network of energy and nutrient sensing proteins. Activation of poly(ADP-ribose) polymerases (PARPs) has been known to impair mitochondrial function; however, our view of PARP-mediated mitochondrial dysfunction and injury has only recently fundamentally evolved. In this review, we examine our current understanding of PARP-elicited mitochondrial damage, PARP-mediated signal transduction pathways, transcription factors that interact with PARPs and govern mitochondrial biogenesis, as well as mitochondrial diseases that are mediated by PARPs. With PARP activation emerging as a common underlying mechanism in numerous pathologies, a better understanding the role of various PARPs in mitochondrial regulation may help open new therapeutic avenues.
Resumo:
DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.
Resumo:
SUMMARY Under stressful conditions, mutant or post-translationally modified proteins may spontaneously misfold and form toxie species, which may further assemble into a continuum of increasingly large and insoluble toxic oligomers that may further condense into less toxic, compact amyloids in the cell Intracellular accumulation of aggregated proteins is a common denominator of several neurodegenerative diseases. To cope with the cytotoxicity induced by abnormal, aggregated proteins, cells have evolved various defence mechanisms among which, the molecular chaperones Hsp70. Hsp70 (DnaK in E. coii) is an ATPase chaperone involved in many physiological processes in the cell, such as assisting de novo protein folding, dissociating native protein oligomers and serving as pulling motors in the import of polypeptides into organelles. In addition, Hsp70 chaperones can actively solubilize and reactivate stable protein aggregates, such as heat- or mutation-induced aggregates. Hsp70 requires the cooperation of two other co-chaperones: Hsp40 and NEF (Nucleotide exchange factor) to fulfil its unfolding activity. In the first experimental section of this thesis (Chapter II), we studied by biochemical analysis the in vitro interaction between recombinant human aggregated α-synuclein (a-Syn oligomers) mimicking toxic a-Syn oligomers species in PD brains, with a model Hsp70/Hsp40 chaperone system (the E. coii DnaK/DnaJ/GrpE). We found that chaperone-mediated unfolding of two denatured model enzymes were strongly affected by α-Syn oligomers but, remarkably, not by monomers. This in vitro observed dysfunction of the Hsp70 chaperone system resulted from the sequestration of the Hsp40 proteins by the oligomeric α-synuclein species. In the second experimental part (Chapter III), we performed in vitro biochemical analysis of the co-chaperone function of three E. coii Hsp40s proteins (DnaJ, CbpA and DjlA) in the ATP-fuelled DnaK-mediated refolding of a model DnaK chaperone substrate into its native state. Hsp40s activities were compared using dose-response approaches in two types of in vitro assays: refolding of heat-denatured G6PDH and DnaK-mediated ATPase activity. We also observed that the disaggregation efficiency of Hsp70 does not directly correlate with Hsp40 binding affinity. Besides, we found that these E. coii Hsp40s confer substrate specificity to DnaK, CbpA being more effective in the DnaK-mediated disaggregation of large G6PDH aggregates than DnaJ under certain conditions. Sensibilisées par différents stress ou mutations, certaines protéines fonctionnelles de la cellule peuvent spontanément se convertir en formes inactives, mal pliées, enrichies en feuillets bêta, et exposant des surfaces hydrophobes favorisant l'agrégation. Cherchant à se stabiliser, les surfaces hydrophobes peuvent s'associer aux régions hydrophobes d'autres protéines mal pliées, formant des agrégats protéiques stables: les amyloïdes. Le dépôt intracellulaire de protéines agrégées est un dénominateur commun à de nombreuses maladies neurodégénératives. Afin de contrer la cytotoxicité induite par les protéines agrégées, les cellules ont développé plusieurs mécanismes de défense, parmi lesquels, les chaperonnes moléculaires Hsp70. Hsp70 nécessite la collaboration de deux autres co-chaperonnes : Hsp40 et NEF pour accomplir son activité de désagrégation. Hsp70 (DnaK, chez E. coli) est impliquée par ailleurs dans d'autres fonctions physiologiques telles que l'assistanat de protéines néosynthétisées à la sortie du ribosome, ou le transport transmembranaire de polypeptides. Par ailleurs, les chaperonnes Hsp70 peuvent également solubiliser et réactiver des protéines agrégées à la suite d'un stress ou d'une mutation. Dans la première partie expérimentale de cette thèse (Chapter II), nous avons étudié in vitro l'interaction entre les oligomères d'a-synucleine, responsables entre autres, de la maladie de Parkinson, et le système chaperon Hsp70/Hsp40 (système Escherichia coli DnaK/DnaJ/GrpE). Nous avons démontré que contrairement aux monomères, les oligomères d'a-synucleine inhibaient le système chaperon lors du repliement de protéines agrégées. Cette dysfonction du système chaperon résulte de la séquestration des chaperonnes Hsp40 par les oligomères d'a-synucleine. La deuxième partie expérimentale (Chapitre III) est consacrée à une étude in vitro de la fonction co-chaperonne de trois Hsp40 d'is. coli (DnaJ, CbpA, et DjlA) lors de la désagrégation par DnaK d'une protéine pré-agrégée. Leurs activités ont été comparées par le biais d'une approche dose-réponse au niveau de deux analyses enzymatiques: le repliement de la protéine agrégée et l'activité ATPase de DnaK. Par ailleurs, nous avons mis en évidence que l'efficacité de désagrégation d'Hsp70 et l'affinité des chaperonnes Hsp40 vis-à-vis de leur substrat n'étaient pas corrélées positivement. Nous avons également montré que ces trois chaperonnes Hsp40 étaient directement impliquées dans la spécificité des fonctions accomplies par les chaperonnes Hsp70. En effet, DnaK en présence de CbpA assure la désagrégation de large agrégats protéiques avec une efficacité nettement plus accrue qu'en présence de DnaJ.
Resumo:
AbstractPlants are sessile organisms, which have evolved an astonishing ability to sense changes in their environment. Depending on the surrounding conditions, such as changes in light and temperature, plants modulate the activity of important transcriptional regulators. The shade avoidance syndrome (SAS) is one important mechanism for shade-intolerant plants to adapt their growth in high vegetative density. In shaded conditions plants sense a diminished red/far-red ratio via the phytochrome system and respond with morphological changes such as elongation growth of stems and petioles. The Phytochrome Interacting Factors 4 and 5 (PIF4 and PIF5) are positive regulators of the SAS and required for a full response (Lorrain et al, 2008). They regulate the SAS by inducing the expression of shade avoidance marker genes such as PIL1, ATHB2, XTR7 and HFR1 (Hornitschek et al, 2009; Lorrain et al, 2008).I investigated the molecular mechanism underlying the regulation of the SAS by HFR1 (long Hypocotyl in FR light). Although HFR1 is a PIF-related bHLH transcription factor, we discovered that HFR1 is a non-DNA binding protein. Moreover, we revealed that HFR1 inhibits an exaggerated SAS by forming non-DNA binding heterodimers with PIF4 and PIF5 (Hornitschek et al, 2009). This negative feedback loop is an important mechanism to limit elongation growth also in elevated temperatures. HFR1 accumulation and activity are highly temperature-dependent and the increased activity of HFR1 at warmer temperatures also provides an important restraint on PIF4-driven elongation growth (Foreman et al, 2011).Finally we performed a genome-wide analysis to determine how PIF4 and PIF5 regulate growth in response to shade. We identified potential PIF5- target genes, which represent many well-known shade-responsive genes. Our analysis of gene expression also revealed a role of PIF4 and PIF5 in simulated sun possibly via the regulation of auxin sensitivity.RésuméLes plantes sont des organismes sessiles ayant développé une capacité surprenante à détecter des changements dans leur environnement. En fonction des conditions extérieures, telles que les variations de lumière ou de température, elles adaptent l'activité d'importants régulateurs transcriptionnels. Le syndrome d'évitement de l'ombre (SAS), est un mécanisme important pour les plantes intolérantes à l'ombre leur permettant d'adapter leur croissance lorsqu'elles se développent dans des conditions de végétations très denses. Dans ces conditions, les plantes détectent une réduction de la quantité relative de lumière rouge par rapport à la lumière rouge-lointain (rapport R/FR). Ce changement, perçu via le système des phytochromes, induit des modifications morphologiques telle qu'une élongation des tiges et des pétioles. Les protéines PIF4 et PIF5 (Phytochrome Interacting Factors) sont des régulateurs positifs du SAS et sont nécessaires pour une réponse complète (Lorrain et al, 2008). Ces facteurs de transcription régulent le SAS en induisant l'expression de gènes marqueurs de cette réponse tels que PIL1, ATHB2, XTR7 et HFR1 (Hornitschek et al, 2009; Lorrain et al, 2008).J'ai étudié les mécanismes moléculaires sous-jacents à la régulation du SAS par HFR1 (long Hypocotyl in FR light). HFR1 est un facteur de transcription type bHLH de la famille des PIF, quoique nous ayons découvert que HFR1 est une protéine ne se liant pas à Γ ADN. Nous avons montré que HFR1 inhibe un SAS exagéré en formant des heterodimères avec PIF4 et PIF5 (Hornitschek et al, 2009). Nous avons également montré que cette boucle de régulation négative est également un mécanisme important pour limiter la croissance de l'élongation dans des conditions de fortes températures. De plus l'accumulation et l'activité de HFR1 augmentent avec la température ce qui permet d'inhiber plus fortement l'effet activateur de PIF4 sur la croissance.Enfin, nous avons effectué une analyse génomique à large échelle afin de déterminer comment PIF4 et PIF5 régulent la croissance en réponse à l'ombre. Nous avons identifié les gènes cibles potentiels de PIF5, correspondant en partie à des gènes connus dans la réponse de l'évitement de l'ombre. Notre analyse de l'expression des gènes a également révélé un rôle important de PIF4 et PIF5 dans des conditions de croissance en plein soleil, probablement via la régulation de la sensibilité à l'auxine.
Resumo:
Ga(3+) is a semimetal element that competes for the iron-binding sites of transporters and enzymes. We investigated the activity of gallium maltolate (GaM), an organic gallium salt with high solubility, against laboratory and clinical strains of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), and methicillin-resistant S. epidermidis (MRSE) in logarithmic or stationary phase and in biofilms. The MICs of GaM were higher for S. aureus (375 to 2000 microg/ml) than S. epidermidis (94 to 200 microg/ml). Minimal biofilm inhibitory concentrations were 3,000 to >or=6,000 microg/ml (S. aureus) and 94 to 3,000 microg/ml (S. epidermidis). In time-kill studies, GaM exhibited a slow and dose-dependent killing, with maximal action at 24 h against S. aureus of 1.9 log(10) CFU/ml (MSSA) and 3.3 log(10) CFU/ml (MRSA) at 3x MIC and 2.9 log(10) CFU/ml (MSSE) and 4.0 log(10) CFU/ml (MRSE) against S. epidermidis at 10x MIC. In calorimetric studies, growth-related heat production was inhibited by GaM at subinhibitory concentrations; and the minimal heat inhibition concentrations were 188 to 4,500 microg/ml (MSSA), 94 to 1,500 microg/ml (MRSA), and 94 to 375 microg/ml (MSSE and MRSE), which correlated well with the MICs. Thus, calorimetry was a fast, accurate, and simple method useful for investigation of antimicrobial activity at subinhibitory concentrations. In conclusion, GaM exhibited activity against staphylococci in different growth phases, including in stationary phase and biofilms, but high concentrations were required. These data support the potential topical use of GaM, including its use for the treatment of wound infections, MRSA decolonization, and coating of implants.
Resumo:
The initiation of chromosomal replication must be tightly regulated so that the genome is replicated only once per cell cycle. In most bacteria, DnaA binds to the origin of replication and initiates chromosomal replication. DnaA is a dual-function protein that also acts as an important transcription factor that regulates the expression of many genes in bacteria. Thus, understanding how this protein is regulated during the bacterial cell cycle is of major importance. The α-proteobacterium Caulobacter crescentus is an excellent model to study the bacterial cell cycle, mainly because it is possible to isolate synchronized cell cultures and because it initiates the replication of its chromosome once per cell cycle and at a specific time of the cell cycle. This latest feature is of special interest for the major aim of my thesis work, which focused on the temporal and spatial regulation of the activity of the essential DnaA protein in C. crescentus. In Escherichia coli, the Hda protein converts ATP-DnaA into ADP- DnaA by stimulating the ATPase activity of DnaA, to prevent over-initiation of chromosome replication. We propose that there exists a similar mechanism in C. crescentus, which is not only involved in the temporal control of chromosome replication, but also in the control of gene expression. First, we provided evidences indicating that the hydrolysis of the ATP bound to DnaA is essential for the viability of C. crescentus. Our results suggest that ATP-DnaA promotes the initiation of chromosome replication, since we found that cells over-expressing a DnaA protein with a mutated ATPase domain, DnaA(R357A), over-initiated chromosome replication, unlike cells expressing the wild-type DnaA protein at similar levels. By contrast, the DnaA(R357A) protein was less active than DnaA in promoting the transcription of three essential genes, suggesting that these may be more efficiently activated by ADP-DnaA than ATP-DnaA. We propose that the ATP-DnaA to ADP-DnaA switch down-regulates the initiation of DNA replication while activating the transcription of several essential genes involved in subsequent cell cycle events. Second, we studied the role of the HdaA protein, homologous to Hda, in promoting the ATP- DnaA to ADP-DnaA switch in C. crescentus. HdaA is essential for viability and its depletion in the cell leads to an over-replication of the chromosome, indicating that HdaA is a negative regulator of DNA replication. HdaA dynamically co-localizes with the replisome. In this work, we identified DnaN, the β-clamp of the DNA polymerase, as the replisome component that interacts directly with HdaA and that recruits HdaA to the replisome in live C. crescentus cells. We also showed that a mutant HdaA protein that cannot interact or co-localize with DnaN is not functional, indicating that HdaA is probably activated by DnaN. However, we found that another non-functional HdaA protein, mutated in the conserved Arginine finger of its AAA+ domain, was able to localize at the replisome, suggesting that the AAA+ domain of HdaA exerts its essential function after the recruitment of HdaA to the replisome. We propose that HdaA stimulates the ATPase activity of DnaA once DNA replication is ongoing, via its interaction with DnaN and the activity of the two conserved R fingers of DnaA and HdaA. Finally, we created different strains in which HdaA, DnaN or DnaA were over-produced. We observed that the over-production of HdaA seems to lead to a delay in chromosome replication, while the over-production of DnaN had an opposite effect. Our results also indicate that the over-production of DnaA may intensify the over-initiation phenotype of cells depleted for HdaA. We conclude that the dynamic interplay of HdaA and DnaN in the cell contributes to regulating the ATP-DnaA/ADP-DnaA ratio in the cell, to ensure once per cell cycle initiation of chromosomal replication in C. crescentus. Altogether, our work provided important information on the regulation of the activity of DnaA in C. crescentus. Since DnaA, HdaA and DnaN are well-conserved proteins, most of our findings are useful to understand how chromosome replication and gene expression are controlled by DnaA in many other bacterial species. - L'initiation de la réplication des chromosomes doit être précisément régulée de telle sorte que le génome ne soit répliqué qu'une seule fois par cycle cellulaire. Chez la plupart des bactéries, DnaA se lie à l'origine de réplication du chromosome et en initie sa réplication. DnaA est aussi un facteur de transcription qui régule l'expression de nombreux gènes bactériens. De ce fait, il est très important de comprendre comment DnaA est régulée au cours du cycle cellulaire bactérien. L'a-protéobactérie Caulobacter crescentus est un excellent modèle pour étudier le cycle cellulaire bactérien, essentiellement parce qu'il est aisé d'isoler des populations de cellules synchronisées à la même étape du cycle cellulaire et parce que cette bactérie n'initie la réplication de son chromosome qu'une seule fois et à un moment précis de son cycle. Cette dernière caractéristique est particulièrement pertinente pour l'objectif de mon travail doctoral, qui consistait à comprendre comment l'activité de la protéine essentielle DnaA est régulée dans l'espace et dans le temps chez C. crescentus. Chez Escherichia coli, la protéine Hda convertie DnaA-ATP en DnaA-ADP en stimulant l'activité ATPasique de DnaA, ce qui empêche la sur-initiation de la réplication du chromosome. Nous proposons qu'un mécanisme similaire existe chez C. crescentus. Il serait non seulement nécessaire au contrôle de la réplication du chromosome, mais aussi au contrôle de l'expression de certains gènes. Dans un premier temps, nous avons mis en évidence le fait que l'hydrolyse de l'ATP lié à DnaA est un processus essentiel à la viabilité de C. crescentus. Nos résultats suggèrent que DnaA-ATP initie la réplication du chromosome, comme nous avons observé que des cellules qui sur-expriment une protéine DnaA(R357A) mutée sans domaine ATPasique fonctionnel, sur-initie la réplication de leur chromosome, contrairement aux cellules qui sur-expriment la protéine DnaA sauvage à des niveaux équivalents. Au contraire, la protéine DnaA(R357A) était moins active que la protéine DnaA sauvage pour promouvoir la transcription de trois gènes essentiels, ce qui suggère que ces derniers sont peut-être plus efficacement activés par DnaA-ADP que DnaA-ATP. Nous proposons que la conversion de DnaA-ATP en DnaA-ADP réprime l'initiation de la réplication, tandis qu'elle active la transcription de plusieurs gènes impliqués dans des étapes plus tardives du cycle cellulaire. Dans un deuxième temps, nous avons étudié le rôle de la protéine HdaA, homologue à Hda, dans la conversion de DnaA-ATP en DnaA-ADP chez C. crescentus. Cette protéine est essentielle à la viabilité de C. crescentus et sa déplétion donne des cellules qui sur-initient la réplication de leur chromosome, suggérant que HdaA est un répresseur de la réplication du chromosome. HdaA co-localise de manière dynamique avec le réplisome. Lors de mon travail doctoral, nous avons démontré que DnaN, le β-clamp de l'ADN polymérase, est l'élément qui recrute HdaA au réplisome in vivo. Nous avons aussi montré qu'une protéine HdaA mutante qui ne peut pas interagir ou co-localiser avec DnaN, n'est pas fonctionnelle, ce qui suggère que HdaA est activée par DnaN. Nous avons néanmoins aussi isolé une autre protéine HdaA non fonctionnelle, dont une arginine conservée de son domaine AAA+ était mutée, mais qui pouvait toujours co-localiser avec le réplisome, ce qui suggère que le domaine AAA+ de HdaA est nécessaire après le recrutement de HdaA au réplisome. Nous proposons que HdaA stimule l'activité ATPasique de DnaA qu'une fois que la réplication a commencé, grâce à son interaction avec DnaN et aux deux arginines conservées des protéines HdaA et DnaA. Finalement, nous avons construit différentes souches sur-exprimant HdaA, DnaN ou DnaA. Nous avons observé que la sur-production de HdaA retarde la réplication du chromosome, tandis que la sur-production de DnaN a un effet opposé. Nos observations suggèrent aussi que la sur-expression de DnaA dans des cellules déplétées pour HdaA aggrave leur phénotype de sur-initiation. Nous en concluons que HdaA et DnaN collaborent étroitement et de manière dynamique pour réguler le rapport DnaA-ATP/DnaA-ADP dans la cellule, pour s'assurer que la réplication du chromosome ne soit initiée qu'une seule fois par cycle cellulaire chez C. crescentus. Globalement, notre travail a mis en évidence des informations importantes sur la régulation de l'activité de DnaA chez C. crescentus. Comme DnaA, HdaA et DnaN sont des protéines très conservées, la plupart de nos découvertes sont utiles pour mieux comprendre comment la réplication du chromosome bactérien et l'expression des gènes sont contrôlées par DnaA chez de nombreuses autres espèces bactériennes.
Resumo:
OBJECTIVE: The cause precipitating intracranial aneurysm rupture remains unknown in many cases. It has been observed that aneurysm ruptures are clustered in time, but the trigger mechanism remains obscure. Because solar activity has been associated with cardiovascular mortality and morbidity, we decided to study its association to aneurysm rupture in the Swiss population. METHODS: Patient data were extracted from the Swiss SOS database, at time of analysis covering 918 consecutive patients with angiography-proven aneurysmal subarachnoid hemorrhage treated at 7 Swiss neurovascular centers between January 1, 2009, and December 31, 2011. The daily rupture frequency (RF) was correlated to the absolute amount and the change in various parameters of interest representing continuous measurements of solar activity (radioflux [F10.7 index], solar proton flux, solar flare occurrence, planetary K-index/planetary A-index, Space Environment Services Center [SESC] sunspot number and sunspot area) using Poisson regression analysis. RESULTS: During the period of interest, there were 517 days without recorded aneurysm rupture. There were 398, 139, 27, 12, 1, and 1 days with 1, 2, 3, 4, 5, and 6 ruptures per day. Poisson regression analysis demonstrated a significant correlation of F10.7 index and RF (incidence rate ratio [IRR] = 1.006303; standard error (SE) 0.0013201; 95% confidence interval (CI) 1.003719-1.008894; P < 0.001), according to which every 1-unit increase of the F10.7 index increased the count for an aneurysm to rupture by 0.63%. A likewise statistically significant relationship of both the SESC sunspot number (IRR 1.003413; SE 0.0007913; 95% CI 1.001864-1.004965; P < 0.001) and the sunspot area (IRR 1.000419; SE 0.0000866; 95% CI 1.000249-1.000589; P < 0.001) emerged. All other variables analyzed showed no significant correlation with RF. CONCLUSIONS: We found greater radioflux, SESC sunspot number, and sunspot area to be associated with an increased count of aneurysm rupture. The clinical meaningfulness of this statistical association must be interpreted carefully and future studies are warranted to rule out a type-1 error.
Resumo:
Adiposity, low aerobic fitness and low levels of activity are all associated with clustered cardiovascular disease risk in children and their high prevalence represents a major public health concern. The aim of this study is to investigate the relationship of objectively measured physical activity (PA) with motor skills (agility and balance), aerobic fitness and %body fat in young children. This study is a cross-sectional and longitudinal analyses using mixed linear models. Longitudinal data were adjusted for baseline outcome parameters. In all, 217 healthy preschool children (age 4-6 years, 48% boys) participated in this study. PA (accelerometers), agility (obstacle course), dynamic balance (balance beam), aerobic fitness (20-m shuttle run) and %body fat (bioelectric impedance) at baseline and 9 months later. PA was positively associated with both motor skills and aerobic fitness at baseline as well as with their longitudinal changes. Specifically, only vigorous, but not total or moderate PA, was related to changes in aerobic fitness. Higher PA was associated with less %body fat at baseline, but not with its change. Conversely, baseline motor skills, aerobic fitness or %body fat were not related to changes in PA. In young children, baseline PA was associated with improvements in motor skills and in aerobic fitness, an important determinant of cardiovascular risk.
Resumo:
Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Eda leads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh) signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-kappaB (NF-kappaB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.
Resumo:
Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.
Resumo:
We demonstrate that RecA protein can mediate annealing of complementary DNA strands in vitro by at least two different mechanisms. The first annealing mechanism predominates under conditions where RecA protein causes coaggregation of single-stranded DNA (ssDNA) molecules and where RecA-free ssDNA stretches are present on both reaction partners. Under these conditions annealing can take place between locally concentrated protein-free complementary sequences. Other DNA aggregating agents like histone H1 or ethanol stimulate annealing by the same mechanism. The second mechanism of RecA-mediated annealing of complementary DNA strands is best manifested when preformed saturated RecA-ssDNA complexes interact with protein-free ssDNA. In this case, annealing can occur between the ssDNA strand resident in the complex and the ssDNA strand that interacts with the preformed RecA-ssDNA complex. Here, the action of RecA protein reflects its specific recombination promoting mechanism. This mechanism enables DNA molecules resident in the presynaptic RecA-DNA complexes to be exposed for hydrogen bond formation with DNA molecules contacting the presynaptic RecA-DNA filament.
Resumo:
Low efficiency of transfection is often the limiting factor for acquiring conclusive data in reporter assays. It is especially difficult to efficiently transfect and characterize promoters in primary human cells. To overcome this problem we have developed a system in which reporter gene expression is quantified by flow cytometry. In this system, green fluorescent protein (GFP) reporter constructs are co-transfected with a reference plasmid that codes for the mouse cell surface antigen Thy-1.1 and serves to determine transfection efficiency. Comparison of mean GFP expression of the total transfected cell population with the activity of an analogous luciferase reporter showed that the sensitivity of the two reporter systems is similar. However, because GFP expression can be analyzed at the single-cell level and in the same cells the expression of the reference plasmid can be monitored by two-color fluorescence, the GFP reporter system is in fact more sensitive, particularly in cells which can only be transfected with a low efficiency.
Resumo:
Ultraviolet-C irradiation as a method to induce the production of plant compounds with antifungal properties was investigated in the leaves of 18 plant species. A susceptibility assay to determine the antifungal susceptibility of filamentous fungi was developed based on an agar dilution series in microtiter plates. UV irradiation strongly induced antifungal properties in five species against a clinical Fusarium solani strain that was responsible for an onychomycosis case that was resistant to classic pharmacological treatment. The antifungal properties of three additional plant species were either unaffected or reduced by UV-C irradiation. This study demonstrates that UV-C irradiation is an effective means of modulating the antifungal activity of very diverse plants from a screening perspective.