343 resultados para MUSCULAR FUNCTION
em Université de Lausanne, Switzerland
Resumo:
The diagnosis of muscular dystrophies or the assessment of the functional benefit of gene or cell therapies can be difficult, especially for poorly accessible muscles, and it often lacks a singlefiber resolution. In the present study, we evaluated whether muscle diseases can be diagnosed from small biopsies using atomic force microscopy (AFM). AFM was shown to provide a sensitive and quantitative description of the resistance of normal and dystrophic myofibers within live muscle tissues explanted from Duchenne mdx mice. The rescue of dystrophin expression by gene therapy approaches led to the functional recovery of treated dystrophic muscle fibers, as probed using AFM and by in situ wholemuscle strength measurements. Comparison of muscles treated with viral or non-viral vectors indicated that the efficacy of the gene transfer approaches could be distinguished with a single myofiber resolution. This indicated full correction of the resistance to deformation in nearly all of the muscle fibers treated with an adeno-associated viral vector that mediates exon-skipping on the dystrophin mRNA. Having shown that AFM can provide a quantitative assessment of the expression of muscle proteins and of the muscular function in animal models, we assessed myofiber resistance in the context of human muscular dystrophies and myopathies. Thus, various forms of human Becker syndrome can also be detected using AFM in blind studies of small frozen biopsies from human patients. Interestingly, it also allowed the detection of anomalies in a fraction of the muscle fibers from patients showing a muscle weakness that could not be attributed to a known molecular or genetic defect. Overall, we conclude that AFM may provide a useful method to complement current diagnosis tools of known and unknown muscular diseases, in research and in a clinical context.
Resumo:
HYPOTHESIS: Supraspinatus deficiency associated with total shoulder arthroplasty (TSA) provokes eccentric loading and may induce loosening of the glenoid component. A downward inclination of the glenoid component has been proposed to balance supraspinatus deficiency. METHODS: This hypothesis was assessed by a numeric musculoskeletal model of the glenohumeral joint during active abduction. Three cases were compared: TSA with normal muscular function, TSA with supraspinatus deficiency, and TSA with supraspinatus deficiency and downward inclination of the glenoid. RESULTS: Supraspinatus deficiency increased humeral migration and eccentric loading. A downward inclination of the glenoid partly balanced the loss of stability, but this potential advantage was counterbalanced by an important stress increase within the glenoid cement. The additional subchondral bone reaming required to incline the glenoid component indeed reduced the bone support, increasing cement deformation and stress. CONCLUSION: Glenoid inclination should not be obtained at the expense of subchondral bone support.
Resumo:
Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.
Resumo:
Loss-of-function mutations in calpain 3 have been shown to cause limb-girdle muscular dystrophy type 2A (LGMD2A), an autosomal recessive disorder that results in gradual wasting of the muscles of the hip and shoulder areas. Due to the inherent instability of calpain 3, recombinant expression of the full-length enzyme has not been possible, making in vitro analysis of specific LGMD2A-causing mutations difficult. However, because calpain 3 is highly similar in amino acid sequence to calpain 2, the recently solved crystal structure of full-length, Ca2+-bound, calpastatin-inhibited rat calpain 2 has allowed us to model calpain 3 as a Ca2+-bound homodimer. The model revealed three distinct areas of the enzyme that undergo a large conformational change upon Ca2+-binding. Located in these areas are several residues that undergo mutation to cause LGMD2A. We investigated the in vitro effects of six of these mutations by making the corresponding mutations in rat calpain 2. All six mutations examined in this study resulted in a decrease in enzyme activity. All but one of the mutations caused an increased rate of autoproteolytic degradation of the enzyme as witnessed by SDS-PAGE, indicating the decrease in enzyme activity is caused, at least in part, by an increase in the rate of autoproteolytic degradation. The putative in vivo effects of these mutations on calpain 3 activity are discussed with respect to their ability to cause LGMD2A.
Resumo:
Introduction: Myocardial infarction is rare in children, if it occurs, findings are almost similar to adults. In Ouchenne muscular dystrophy (OMO), ST segment displacement associated with typical chest pain can occur. We report the case of a young boy with OMO presenting symptoms suggestive of myocardial ischemia. Case report: 7 year old boy, diagnosed with OMO, eoming to the emergency department with complaints of acute chest pain, dyspnoea and anxiety the night before. Clinical examination was not remarkable, with exception of findings of the OMO. ECG showed important ST-segment elevation in right precordial leads. Major increase in troponin 1 42.33 mcg/(normal, <0.04 mcg/I) was found. Echocardiography revealed slight yskinesia of postero-septal wall without decrease in ventricular function. As acute pain had happened more han 12 hours before referral and as the child was asymptomatic, he received anti-platelets therapy. The serum level of troponin 1 declined and the ECG normalised in a few days. Cardiac catheterization did not show any coronary anomaly or eardiac dysfunction. Cardiac biopsy revealed myocardial cell damaged compatible with OMO cardiomyopathy. Tc99m myocardial single-photon emission computed tomography (SPECT) did not show any radionuclide uptake defect. Conclusions: ln this particular context of children with OMO, the classical signs of myocardial ischemia could be misleading, standard investigation failed to demonstrate the cause of chest pain and inerease of troponin l, there was also no evidence of myocarditis. Role of late enhancement (LE) signal in eontrast-enhanced MRI in the understanding of the occurring process has to be evaluated.
Resumo:
Duchenne muscular dystrophy is is the most common form of the childhood muscular dystrophies. It follows a predictable clinical course marked by progressive skeletal muscle weakness, lost of ambulation before teen-age and death in early adulthood secondary to respiratory or cardiac failure. Becker muscular dystrophy is less common and has a milder clinical course but also results in respiratory and cardiac failure.Altough recent advances in respiratory care and new technologies have improved the outlook many patients already received only a traditional non-interventional approach. The aims of this work are: to analyse the pathophysiology and natural history of respiratory function in these diseases, to descript their clinical manifestations, to present the diagnostics tools and to provide recommendations for an adequated respiratory care in this particular population based on the updated literature referenced.
Resumo:
Dystroglycan, which serves as a major extracellular matrix receptor in muscle and the central nervous system, requires extensive O-glycosylation to function. We identified a dystroglycan missense mutation (Thr192→Met) in a woman with limb-girdle muscular dystrophy and cognitive impairment. A mouse model harboring this mutation recapitulates the immunohistochemical and neuromuscular abnormalities observed in the patient. In vitro and in vivo studies showed that the mutation impairs the receptor function of dystroglycan in skeletal muscle and brain by inhibiting the post-translational modification, mediated by the glycosyltransferase LARGE, of the phosphorylated O-mannosyl glycans on α-dystroglycan that is required for high-affinity binding to laminin.
Resumo:
Duchenne muscular dystrophy (DMD) affects orofacial function. Our aim was to evaluate certain characteristics of orofacial function in DMD and relate possible deteriorations to the age of the patients and to the diminished internal structure quality of the masseter muscle. Bite force and finger force were measured in 16 DMD patients (6-20 years old) and 16 age matched controls. The thickness and internal structure quality of the masseter muscle were evaluated ultrasonographically. We found reduced mouth opening but no signs of masticatory muscle tenderness. Bite force values were lower for DMD patients. Masseter thickness showed no significant differences between the two groups, but poorer internal muscle structure quality characterised the elder, non-walking DMD patients explaining their low bite force values. In conclusion, the masseter muscle follows the general progress of the disease. Orofacial function in DMD patients is becoming ever more important as their life expectancy increases.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Resumo:
Shoulder disorders, including rotator cuff tears, affect the shoulder function and result in adapted muscle activation. Although these adaptations have been studied in controlled conditions, free-living activities have not been investigated. Based on the kinematics measured with inertial sensors and portable electromyography, the objectives of this study were to quantify the duration of the muscular activation in the upper trapezius (UT), medial deltoid (MD) and biceps brachii (BB) during motion and to investigate the effect of rotator cuff tear in laboratory settings and daily conditions. The duration of movements and muscular activations were analysed separately and together using the relative time of activation (TEMG/mov). Laboratory measurements showed the parameter's reliability through movement repetitions (ICC > 0.74) and differences in painful shoulders compared with healthy ones (p < 0.05): longer activation for UT; longer activation for MD during abduction and tendency to shorter activation in other movements; shorter activation for BB. In daily conditions, TEMG/mov for UT was longer, whereas it was shorter for MD and BB (p < 0.05). Moreover, significant correlations were observed between these parameters and clinical scores. This study thus provides new insights into the rotator cuff tear effect on duration of muscular activation in daily activity.
Resumo:
Multiple motor function and strength assessment tools exist for the evaluation of neuromuscular diseases, but most do not directly assess functional ability in the patients' daily physical activity in their home environment. In this study our aim was to assess: 1) the feasibility and accuracy of physical activity monitoring during two days in a home environment of five DMD patients using a non-commercialized monitor containing a 3D accelerometer and a gyroscope, 2) if a difference in the physical activity parameters could be measured before and one month after starting prednisolone. We reliably quantified the time spend sitting, standing, lying, walking, the number of steps taken, the cadence, the number of walking episodes and their duration as well as how these were distributed over the day. Parameters possibly reflecting endurance, such as the duration of the walking episodes or the succession of two or three walking episodes lasting more than 30 s were the most improved after prednisolone treatment. This degree of detailed determination of physical activity in a home environment has not been previously reported in neuromuscular disorders to our knowledge and some of the reported parameters are potential new outcome measures in clinical trials.
Resumo:
Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.
Resumo:
Reduced re'nal function has been reported with tenofovir disoproxil fumarate (TDF). It is not clear whether TDF co-administered with a boosted protease inhibitor (PI) leads to a greater decline in renal function than TDF co-administered with a non-nucleoside reverse transcriptase inhibitor (NNRTI).Methods: We selected ail antiretroviral therapy-naive patients in the Swiss HIV Cohort Study (SHCS) with calibrated or corrected serum creatinine measurements starting antiretroviral therapy with TDF and either efavirenz (EFV) or the ritonavir-boosted PIs, lopinavir (LPV/r) or atazanavir (ATV/r). As a measure of renal function, we used the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation to estimate the glomerular filtration rate (eGFR). We calculated the difference in eGFR over time between two therapies using a marginal model for repeated measures. In weighted analyses, observations were weighted by the product of their point of treatment and censoring weights to adjust for differences both in the sort of patients starting each therapy and in the sort of patients remaining on each therapy over time.Results: By March 2011, 940 patients with at least one creatinine measurement on a first therapy with either TDF and EFV (n=484), TDF and LPVlr (n=269) or TDF and ATV/r (n=187) had been followed for a median of 1. 7, 1.2 and 1.3 years, respectively. Table 1 shows the difference in average estimated GFR (eGFR) over time since starting cART for two marginal models. The first model was not adjusted for potential confounders; the second mode! used weights to adjust for confounders. The results suggest a greater decline in renal function during the first 6 months if TDF is used with a PI rather than with an NNRTI, but no further difference between these therapies after the first 6 months. TDF and ATV/r may lead to a greater decline in the first 6 months than TDF and LPVlr.Conclusions: TDF co-administered with a boosted PI leads to a greater de cline in renal function over the first 6 months of therapy than TDF co-administered with an NNRTI; this decline may be worse with ATV/r than with LPV/r.
Resumo:
NKG2D is an activation receptor that allows natural killer (NK) cells to detect diseased host cells. The engagement of NKG2D with corresponding ligand results in surface modulation of the receptor and reduced function upon subsequent receptor engagement. However, it is not clear whether in addition to modulation the NKG2D receptor complex and/or its signaling capacity is preserved. We show here that the prolonged encounter with tumor cell-bound, but not soluble, ligand can completely uncouple the NKG2D receptor from the intracellular mobilization of calcium and the exertion of cell-mediated cytolysis. However, cytolytic effector function is intact since NKG2D ligand-exposed NK cells can be activated via the Ly49D receptor. While NKG2D-dependent cytotoxicity is impaired, prolonged ligand exposure results in constitutive interferon gamma (IFNgamma) production, suggesting sustained signaling. The functional changes are associated with a reduced presence of the relevant signal transducing adaptors DNAX-activating protein of 10 kDa (DAP-10) and killer cell activating receptor-associated protein/DNAX-activating protein of 12 kDa (KARAP/DAP-12). That is likely the consequence of constitutive NKG2D engagement and signaling, since NKG2D function and adaptor expression is restored to normal when the stimulating tumor cells are removed. Thus, the chronic exposure to tumor cells expressing NKG2D ligand alters NKG2D signaling and may facilitate the evasion of tumor cells from NK cell reactions.
Resumo:
A murine monoclonal antibody (SJL 2-4) specific for the antigen apo-cytochrome c was shown to inhibit both antigen-induced proliferation and lymphokine secretion by an apo-cytochrome c-specific BALB/c helper T cell clone. The inhibition was specific because additional apo-cytochrome c-specific T cell clones were not inhibited by the same monoclonal antibody. Time course studies of the inhibition indicated that the initial 8 hr of contact between T cell clones and antigen-presenting cells were critical for activation of the T cell clones. Inhibition of T cell functions by antigen-specific antibodies appeared to correlate with the antibody-antigen binding constant because a second monoclonal antibody (Cyt-1-59), with identical specificity but with a lower affinity constant for apo-cytochrome c, had very little inhibitory effect on the proliferation or lymphokine secretion of apo-cytochrome c-specific T cell clones.