4 resultados para Mäkinen, Helvi
em Université de Lausanne, Switzerland
Resumo:
Lymphatic valves are essential for efficient lymphatic transport, but the mechanisms of early lymphatic-valve morphogenesis and the role of biomechanical forces are not well understood. We found that the transcription factors PROX1 and FOXC2, highly expressed from the onset of valve formation, mediate segregation of lymphatic-valve-forming cells and cell mechanosensory responses to shear stress in vitro. Mechanistically, PROX1, FOXC2, and flow coordinately control expression of the gap junction protein connexin37 and activation of calcineurin/NFAT signaling. Connexin37 and calcineurin are required for the assembly and delimitation of lymphatic valve territory during development and for its postnatal maintenance. We propose a model in which regionally increased levels/activation states of transcription factors cooperate with mechanotransduction to induce a discrete cell-signaling pattern and morphogenetic event, such as formation of lymphatic valves. Our results also provide molecular insights into the role of endothelial cell identity in the regulation of vascular mechanotransduction.
Resumo:
The association between adiposity measures and dyslipidemia has seldom been assessed in a multipopulational setting. 27 populations from Europe, Australia, New Zealand and Canada (WHO MONICA project) using health surveys conducted between 1990 and 1997 in adults aged 35-64 years (n = 40,480). Dyslipidemia was defined as the total/HDL cholesterol ratio >6 (men) and >5 (women). Overall prevalence of dyslipidemia was 25% in men and 23% in women. Logistic regression showed that dyslipidemia was strongly associated with body mass index (BMI) in men and with waist circumference (WC) in women, after adjusting for region, age and smoking. Among normal-weight men and women (BMI<25 kg/m(2)), an increase in the odds for being dyslipidemic was observed between lowest and highest WC quartiles (OR = 3.6, p < 0.001). Among obese men (BMI ≥ 30), the corresponding increase was smaller (OR = 1.2, p = 0.036). A similar weakening was observed among women. Classification tree analysis was performed to assign subjects into classes of risk for dyslipidemia. BMI thresholds (25.4 and 29.2 kg/m(2)) in men and WC thresholds (81.7 and 92.6 cm) in women came out at first stages. High WC (>84.8 cm) in normal-weight men, menopause in women and regular smoking further defined subgroups at increased risk. standard categories of BMI and WC, or their combinations, do not lead to optimal risk stratification for dyslipidemia in middle-age adults. Sex-specific adaptations are necessary, in particular by taking into account abdominal obesity in normal-weight men, post-menopausal age in women and regular smoking in both sexes.
Resumo:
A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for ≈2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
Resumo:
Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.