49 resultados para Low-calorie diet

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Renal calcium stones and hypercalciuria are associated with a reduced bone mineral density (BMD). Therefore, the effect of changes in calcium homeostasis is of interest for both stones and bones. We hypothesized that the response of calciuria, parathyroid hormone (PTH) and 1.25 vitamin D to changes in dietary calcium might be related to BMD. METHODS: A single-centre prospective interventional study of 94 hyper- and non-hypercalciuric calcium stone formers consecutively retrieved from our stone clinic. The patients were investigated on a free-choice diet, a low-calcium diet, while fasting and after an oral calcium load. Patient groups were defined according to lumbar BMD (z-score) obtained by dual X-ray absorptiometry (group 1: z-score <-0.5, n = 30; group 2: z-score -0.5-0.5, n = 36; group 3: z-score >0.5, n = 28). The effect of the dietary interventions on calciuria, 1.25 vitamin D and PTH in relation to BMD was measured. RESULTS: An inverse relationship between BMD and calciuria was observed on all four calcium intakes (P = 0.009). On a free-choice diet, 1.25 vitamin D and PTH levels were identical in the three patient groups. However, the relative responses of 1.25 vitamin D and PTH to the low-calcium diet were opposite in the three groups with the highest increase of 1.25 vitamin D in group 1 and the lowest in group 3, whereas PTH increase was most pronounced in group 3 and least in group 1. CONCLUSION: Calcium stone formers with a low lumbar BMD exhibit a blunted response of PTH release and an apparently overshooting production of 1.25 vitamin D following a low-calcium diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The relation between dietary carbohydrate: lipid ratio and the fuel mixture oxidized during 24 h was investigated in eleven healthy volunteers (six females, and five males) in a respiration chamber. Values of the fuel mixture oxidized were estimated by continuous indirect calorimetry and urinary nitrogen measurements. 2. The subjects, were first given a mixed diet for 7 d and spent the last 24 h of the 7 d period in a respiration chamber for continuous gas-exchange measurement. The fuels oxidized during 2.5 h or moderate exercise were also measured in the respiration chamber. After an interval of 2 weeks from the end of the mixed-diet period, the same subjects were given an isoenergetic high-carbohydrate low-fat diet for 7 d, and the same experimental regimen was repeated. 3. Dietary composition markedly influenced the fuel mixture oxidized during 24 h and this effect was still present 12 h after the last meal in the postabsorptive state. However, the diets had no influence on the substrates oxidized above resting levels during exercise. With both diets, the 24 h energy balance was slightly negative and the energy deficit was covered by lipid oxidation. 4. With the high-carbohydrate low-fat diet, the energy expenditure during sleep was found to be higher than that with the mixed diet. 5. It is concluded that: (a) the composition of the diet did not influence the fuel mixture utilized for moderate exercise, (b) the energy deficit calculated for a 24 h period was compensated by lipid oxidation irrespective of the carbohydrate content of the diet, (c) energy expenditure during sleep was found to be higher with the high-carbohydrate low-fat diet than with the mixed diet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The pattern of substrate utilization with diets containing a high or a low proportion of unavailable and slowly digestible carbohydrates may constitute an important factor in the control, time course, and onset of hunger in humans. OBJECTIVE: We tested the hypothesis that isoenergetic diets differing only in their content of unavailable carbohydrates would result in different time courses of total, endogenous, and exogenous carbohydrate oxidation rates. DESIGN: Two diets with either a high (H diet) or a low (L diet) content of unavailable carbohydrates were fed to 14 healthy subjects studied during two 24-h periods in a metabolic chamber. Substrate utilization was assessed by whole-body indirect calorimetry. In a subgroup of 8 subjects, endogenous and exogenous carbohydrate oxidation were assessed by prelabeling the body glycogen stores with [(13)C]carbohydrate. Subjective feelings of hunger were estimated with use of visual analogue scales. RESULTS: Total energy expenditure and substrate oxidation did not differ significantly between the 2 diets. However, there was a significant effect of diet (P: = 0.03) on the carbohydrate oxidation pattern: the H diet elicited a lower and delayed rise of postprandial carbohydrate oxidation and was associated with lower hunger feelings than was the L diet. The differences in hunger scores between the 2 diets were significantly associated with the differences in the pattern of carbohydrate oxidation among diets (r = -0.67, P: = 0. 006). Exogenous and endogenous carbohydrate oxidation were not significantly influenced by diet. CONCLUSIONS: The pattern of carbohydrate utilization is involved in the modulation of hunger feelings. The greater suppression of hunger after the H diet than after the L diet may be helpful, at least over the short term, in individuals attempting to better control their food intake.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective:We investigated to what extent changes in metabolic rate and composition of weight loss explained the less-than-expected weight loss in obese men and women during a diet-plus-exercise intervention.Design:In all, 16 obese men and women (41±9 years; body mass index (BMI) 39±6 kg m(-2)) were investigated in energy balance before, after and twice during a 12-week very-low-energy diet(565-650 kcal per day) plus exercise (aerobic plus resistance training) intervention. The relative energy deficit (EDef) from baseline requirements was severe (74%-87%). Body composition was measured by deuterium dilution and dual energy X-ray absorptiometry, and resting metabolic rate (RMR) was measured by indirect calorimetry. Fat mass (FM) and fat-free mass (FFM) were converted into energy equivalents using constants 9.45 kcal per g FM and 1.13 kcal per g FFM. Predicted weight loss was calculated from the EDef using the '7700 kcal kg(-1) rule'.Results:Changes in weight (-18.6±5.0 kg), FM (-15.5±4.3 kg) and FFM (-3.1±1.9 kg) did not differ between genders. Measured weight loss was on average 67% of the predicted value, but ranged from 39% to 94%. Relative EDef was correlated with the decrease in RMR (R=0.70, P<0.01), and the decrease in RMR correlated with the difference between actual and expected weight loss (R=0.51, P<0.01). Changes in metabolic rate explained on average 67% of the less-than-expected weight loss, and variability in the proportion of weight lost as FM accounted for a further 5%. On average, after adjustment for changes in metabolic rate and body composition of weight lost, actual weight loss reached 90% of the predicted values.Conclusion:Although weight loss was 33% lower than predicted at baseline from standard energy equivalents, the majority of this differential was explained by physiological variables. Although lower-than-expected weight loss is often attributed to incomplete adherence to prescribed interventions, the influence of baseline calculation errors and metabolic downregulation should not be discounted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: To evaluate the role of endothelin-1 (ET-1) in hypertension, we investigated density and distribution of ETA and ETB receptors in hearts and kidneys of deoxycorticosterone acetate (DOCA)-salt and 1 kidney -- 1 clip (1K1C) hypertensive rats. METHODS: Five groups of uninephrectomized Wistar rats were put on a low salt diet. Three groups of rats drank tap water and two groups received saline. One group of each regimen received DOCA subcutaneously and two corresponding groups without DOCA served as controls. The fifth group of rats had the renal artery clipped to induce 1K1C hypertension. At 6 weeks, mean arterial pressure (MAP) was recorded and membrane binding assays using 125I-ET-1 were carried out. RESULTS: MAP was increased from control 122 +/- 3 to 155 +/- 6 and 218 +/- 11 mmHg in DOCA-salt and 1K1C rats, respectively, and cardiac weight index was increased. ETA receptors were predominantly expressed in the heart, whereas ETB receptors were predominant in the kidney. In the kidneys, the density of the ETB receptor subtype was upregulated in DOCA-salt and 1K1C rats from 160 +/- 8 to 217 +/- 12 and 190 +/- 2 fmol/mg (P < 0.05), respectively, and ETA tended to be downregulated (P = 0.057). Plasma renin activity was decreased in DOCA-salt rats from 17 +/- 3 to 0.17 +/- 0.01 ng/ml per h and increased in 1K1C rats on low salt diet to 30 +/- 5 ng/ml per h. CONCLUSIONS: Since ETB is the predominant endothelin receptor in the kidneys, upregulation of the ETB receptor mediating vasodilation and downregulation of the ETA receptor mediating vasoconstriction would be compatible with a mainly renal counter-regulatory effect of endothelin-1 to hypertension. Both low and high renin models of hypertension may be affected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The optimal diet for chronic kidney disease (CKD) is an issue frequently brought up by patients and/or their relatives during outpatient visits. For patients without malnutrition who are motivated and supported by an experienced multidisciplinary team, the optimal protein intake of 0,6 g/kg of ideal body weight/day is recommended to halt the progression of CKD. A calorie intake of 30 to 35 kcal/kg of ideal body weight/day is necessary to reduce the risk of malnutrition from a low protein diet and to maintain a neutral nitrogen balance. A low-salt diet, namely 5 to 6 g/d, is useful to optimize the treatment of hypertension associated with CKD and to limit fluid overload. At the advanced stage of CKD, it is also necessary to restrict the intake of phosphorus and sometimes potassium. Given the complexity of optimal renal diet, coordination between general practitioners, nephrologists and dietitians is essential to foster optimal care.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this pilot study, we show that plasma phenylalanine concentration can be predicted from urine concentration if the age of the patient is taken into consideration. This observation could open the way to a new monitoring of phenylketonuric patients in which painful frequent blood sampling, mandatory to adapt the low phenylalanine diet, could be mostly replaced by urinalysis. Compliance to treatment would be improved and hence also the ultimate mental development. Since this study was based on a small number of patients, validation of the model in a large multicentric survey is needed before it can be recommended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~ 1:100'000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA and late complications include chronic kidney disease almost exclusively in MMA and cardiomyopathy mainly in PA. Except for vitamin B12 responsive forms of MMA the outcome remains poor despite the existence of apparently effective therapy with a low protein diet and carnitine. This may be related to under recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To measure renal tissue oxygenation in young normo-and hypertensive volunteers under conditions of salt loading and depletion using blood oxygen level dependent magnetic resonance imaging (BOLD-MRI). Design and Methods: Ten normotensive (NT) male volunteers (age 26.5_7.4 y) and eight non-treated, hypertensive (HT) male volunteers (age 28.8_5.7 y) were studied after one week on a high salt (HS) regimen (6g of salt/day added to their normal regimen) and again after one week of a low sodium diet (LS). On the 8th day, BOLD-MRI was performed under standard hydration conditions. Four coronal slices were selected in each kidney, and combination sequence was used to acquire T2* weighted images. The mean R2* (1/T2*) was measured to determine cortical and medullar oxygenation. Results: Baseline characteristics and their changes are shown in the table. The mean cortical R2* was not different under conditions of HS or LS (17.8_1.3 vs. 18.2_0.6 respectively in NT group, p_0.27; 17.4_0.6 vs 17.8_0.9 in HT group, p_0.16). However, the mean medullary R2* was significantly lower under LS conditions in both groups (31.3_0.6 vs 28.1_0.8 in NT group, p_0.05; 30.3_0.8 vs 27.9_1.5 in HT group, p_0.05), corresponding to higher medullary oxygenation as compared to HS conditions, without significant changes in hemoglobin or hematocrit values. The salt induced changes in medullary oxygenation were comparable in the two groups (ANOVA, p_0.1). Conclusion: Dietary sodium restriction leads to increased renal medullary oxygenation compared to high sodium intake in normo-and hypertensive subjects. This observation may in part explain the potential renal benefits of a low sodium intake.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling. METHODS: Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr ( -/- )) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20-26 weeks of intervention, n = 8-10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake. RESULTS: Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr ( -/- ) vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity. CONCLUSIONS/INTERPRETATION: The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial.