56 resultados para Life sciences literature
em Université de Lausanne, Switzerland
Resumo:
The aim of our study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable for the routine determination of blood CO concentration in forensic toxicology laboratories. The main drawback of the GC/MS methods discussed in literature for CO measurement is the absence of a specific CO internal standard necessary for performing quantification. Even if stable isotope of CO is commercially available in the gaseous state, it is essential to develop a safer method to limit the manipulation of gaseous CO and to precisely control the injected amount of CO for spiking and calibration. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in a vial in situ, an internal labeled standard gas ((13)CO) formed by the reaction of labeled formic acid formic acid (H(13)COOH) with sulfuric acid. As sulfuric acid can also be employed to liberate the CO reagent from whole blood, the procedure allows for the liberation of CO simultaneously with the generation of (13)CO. This method allows for precise measurement of blood CO concentrations from a small amount of blood (10 μL). Finally, this method was applied to measure the CO concentration of intoxicated human blood samples from autopsies.
Resumo:
The aim of our study was to provide an innovative HS-GC/MS method applicable to the routine determination of butane concentration in forensic toxicology laboratories. The main drawback of the GC/MS methods discussed in literature concerning butane measurement was the absence of a specific butane internal standard necessary to perform quantification. Because no stable isotope of butane is commercially available, it is essential to develop a new approach by an in situ generation of standards. To avoid the manipulation of a stable isotope-labelled gas, we have chosen to generate in situ an internal labelled standard gas (C(4)H(9)D) following the basis of the stoichiometric formation of butane by the reaction of deuterated water (D(2)O) with Grignard reagent butylmagnesium chloride (C(4)H(9)MgCl). This method allows a precise measurement of butane concentration and therefore, a full validation by accuracy profile was presented.
Resumo:
A review of health sciences literature shows a substantial increase in qualitative publications. This work incorporates a certain number of research quality guidelines. We present the results of the Alceste® lexicometric analysis, which includes 133 quality grids for qualitative research covering five disciplinary fields of the health sciences: medicine and epidemiology, public health and health education, nursing, health sociology and anthropology, psychiatry and psychology. This analysis helped to cross-check the disciplinary fields with the various objectives assigned to the different criteria in the grids examined. The results obtained with Alceste® show the variability of the objectives sought by the authors of the guidelines. These discrepancies are not directly associated to disciplinary fields, and appear to be more closely linked to different qualitative research conceptualizations within the disciplines, and with essential qualitative research validation criteria. These conceptualizations must be clarified to help users better understand the objectives targeted by the grids, and promote more appreciation for qualitative research in the health sciences.
Resumo:
Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.
Resumo:
The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus acts like a constitutively activated receptor of the tumor necrosis factor receptor (TNFR) family and is enriched in lipid rafts. We showed that LMP1 is targeted to lipid rafts in transfected HEK 293 cells, and that the endogenous TNFR-associated factor 3 binds LMP1 and is recruited to lipid rafts upon LMP1 expression. An LMP1 mutant lacking the C-terminal 55 amino acids (Cdelta55) behaves like the wild-type (WT) LMP1 with respect to membrane localization. In contrast, a mutant with a deletion of the 25 N-terminal residues (Ndelta25) does not concentrate in lipid rafts but still binds TRAF3, demonstrating that cell localization of LMP1 was not crucial for TRAF3 localization. Moreover, Ndelta25 inhibited WT LMP1-mediated induction of the transcription factors NF-kappaB and AP-1. Morphological data indicate that Ndelta25 hampers WT LMP1 plasma membrane localization, thus blocking LMP1 function.
Resumo:
A gas chromatography-mass spectrometry (GC-MS) method is presented which allows the simultaneous determination of the plasma concentrations of the levo-alpha-acetylmethadol (LAAM) and of its active metabolites (NorLAAM and DiNorLAAM), after derivatization with the reagent trifluoroacetic anhydride (TFAA). No interferences from endogenous compounds were observed following the extraction of plasma samples from 11 different human subjects. The standard curves were linear over a working range of 5-200ng/ml for the three compounds. Recoveries measured at three concentrations ranged from 47 to 67% for LAAM, from 50 to 69% for NorLAAM and from 28 to 50% for DiNorLAAM. Intra- and interday coefficients of variation determined at three concentrations ranged from 5 to 13% for LAAM, from 3 to 9% for NorLAAM and from 5 to 13% for DiNorLAAM. The limits of quantitation of the method were found to be 4ng/ml for the three compounds. No interference was noted from methadone. This sensitive and specific analytical method could be useful for assessing the in vivo relationship between LAAM's blood levels, clinical efficacy and/or cardiotoxicity
Resumo:
New blood vessel formation, a process referred to as angiogenesis, is essential for embryonic development and for many physiological and pathological processes during postnatal life, including cancer progression. Endothelial cell adhesion molecules of the integrin family have emerged as critical mediators and regulators of angiogenesis and vascular homeostasis. Integrins provide the physical interaction with the extracellular matrix necessary for cell adhesion, migration and positioning, and induction of signaling events essential for cell survival, proliferation and differentiation. Antagonists of integrin alpha V beta 3 suppress angiogenesis in many experimental models and are currently tested in clinical trials for their therapeutic efficacy against angiogenesis-dependent diseases, including cancer. Furthermore, interfering with signaling pathways downstream of integrins results in suppression of angiogenesis and may have relevant therapeutic implications. In this article we review the role of integrins in endothelial cell function and angiogenesis. In the light of recent advances in the field, we will discuss their relevance as a therapeutic target to suppress tumor angiogenesis.
Resumo:
Among the various determinants of treatment response, the achievement of sufficient blood levels is essential for curing malaria. For helping us at improving our current understanding of antimalarial drugs pharmacokinetics, efficacy and toxicity, we have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 200mul of plasma for the simultaneous determination of 14 antimalarial drugs and their metabolites which are the components of the current first-line combination treatments for malaria (artemether, artesunate, dihydroartemisinin, amodiaquine, N-desethyl-amodiaquine, lumefantrine, desbutyl-lumefantrine, piperaquine, pyronaridine, mefloquine, chloroquine, quinine, pyrimethamine and sulfadoxine). Plasma is purified by a combination of protein precipitation, evaporation and reconstitution in methanol/ammonium formate 20mM (pH 4.0) 1:1. Reverse-phase chromatographic separation of antimalarial drugs is obtained using a gradient elution of 20mM ammonium formate and acetonitrile both containing 0.5% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 21min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effect variability, overall process efficiency, standard addition experiments as well as antimalarials short- and long-term stability in plasma. The reactivity of endoperoxide-containing antimalarials in the presence of hemolysis was tested both in vitro and on malaria patients samples. With this method, signal intensity of artemisinin decreased by about 20% in the presence of 0.2% hemolysed red-blood cells in plasma, whereas its derivatives were essentially not affected. The method is precise (inter-day CV%: 3.1-12.6%) and sensitive (lower limits of quantification 0.15-3.0 and 0.75-5ng/ml for basic/neutral antimalarials and artemisinin derivatives, respectively). This is the first broad-range LC-MS/MS assay covering the currently in-use antimalarials. It is an improvement over previous methods in terms of convenience (a single extraction procedure for 14 major antimalarials and metabolites reducing significantly the analytical time), sensitivity, selectivity and throughput. While its main limitation is investment costs for the equipment, plasma samples can be collected in the field and kept at 4 degrees C for up to 48h before storage at -80 degrees C. It is suited to detecting the presence of drug in subjects for screening purposes and quantifying drug exposure after treatment. It may contribute to filling the current knowledge gaps in the pharmacokinetics/pharmacodynamics relationships of antimalarials and better define the therapeutic dose ranges in different patient populations.
Resumo:
Because of the limited accessibility of the brain for experimentation, but also for ethical and economical reasons, there is considerable interest in culture models suitable for neurotoxicological research. Although it is generally accepted that in vitro models cannot cover the entire spectrum of brain functions, they have proven to be indispensable for investigations in the life sciences since the early work of Harrison (1). To date, many in vitro models of various complexity are available, ranging from monolayer cultures of immortalized cell lines to organotypic cultures. Each of these culture systems has its particularities, therefore, it is of great importance to select the model that is most appropriate for the question to be solved.
Resumo:
A sensitive and specific ultra performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of nicotine, its metabolites cotinine and trans-3'-hydroxycotinine and varenicline in human plasma was developed and validated. Sample preparation was realized by solid phase extraction of the target compounds and of the internal standards (nicotine-d4, cotinine-d3, trans-3'-hydroxycotinine-d3 and CP-533,633, a structural analog of varenicline) from 0.5mL of plasma, using a mixed-mode cation exchange support. Chromatographic separations were performed on a hydrophilic interaction liquid chromatography column (HILIC BEH 2.1×100mm, 1.7μm). A gradient program was used, with a 10mM ammonium formate buffer pH 3/acetonitrile mobile phase at a flow of 0.4mL/min. The compounds were detected on a triple quadrupole mass spectrometer, operated with an electrospray interface in positive ionization mode and quantification was performed using multiple reaction monitoring. Matrix effects were quantitatively evaluated with success, with coefficients of variation inferior to 8%. The procedure was fully validated according to Food and Drug Administration guidelines and to Société Française des Sciences et Techniques Pharmaceutiques. The concentration range was 2-500ng/mL for nicotine, 1-1000ng/mL for cotinine, 2-1000ng/mL for trans-3'-hydroxycotinine and 1-500ng/mL for varenicline, according to levels usually measured in plasma. Trueness (86.2-113.6%), repeatability (1.9-12.3%) and intermediate precision (4.4-15.9%) were found to be satisfactory, as well as stability in plasma. The procedure was successfully used to quantify nicotine, its metabolites and varenicline in more than 400 plasma samples from participants in a clinical study on smoking cessation.
Resumo:
We present a method for the analysis of urinary 16(5alpha)-androsten-3alpha-ol together with 5beta-pregnane-3alpha,20alpha-diol and four testosterone metabolites: androsterone (Andro), etiocholanolone (Etio), 5alpha-androstane-3alpha,17beta-diol (5alphaA), 5beta-androstane-3alpha,17beta-diol (5betaA) by means of gas chromatography/combustion/isotopic ratio mass spectrometry (GC/C/IRMS). The within-assay and between-assay precision S.D.s of the investigated steroids were lower than 0.3 and 0.6 per thousand, respectively. A comparative study on a population composed of 20 subjects has shown that the differences of the intra-individual delta(13)C-values for 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol are less than 0.9 per thousand. Thereafter, the method has been applied in the frame of an excretion study following oral ingestion of 50 mg DHEA initially and oral ingestion of 50mg pregnenolone 48 h later. Our findings show that administration of DHEA does not affect the isotopic ratio values of 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol, whereas the isotopic ratio values of 5beta-pregnane-3alpha,20alpha-diol vary by more 5 per thousand upon ingestion of pregnenolone. We have observed delta(13)C-value changes lower than 1 per thousand for 16(5alpha)-androsten-3alpha-ol, though pregnenolone is a precursor of the 16-ene steroids. In contrast to 5beta-pregnane-3alpha,20alpha-diol, the 16-ene steroid may be used as an endogenous reference compound when pregnenolone is administered.
Resumo:
Neuropeptide Y (NPY) is present in the adrenal medulla, in sympathetic neurons as well as in the circulation. This peptide not only exerts a direct vasoconstrictor effect, but also potentiates the vasoconstriction evoked by norepinephrine and sympathetic nerve stimulation. The vasoconstrictor effect of norepinephrine is also enhanced by salt loading and reduced by salt depletion. The purpose of this study was therefore to assess whether there exists a relationship between dietary sodium intake and the levels of circulating NPY. Uninephrectomized normotensive rats were maintained for 3 weeks either on a low, a regular or a high sodium intake. On the day of the experiment, plasma levels of NPY and catecholamines were measured in the unanesthetized animals. There was no significant difference in plasma norepinephrine and epinephrine levels between the 3 groups of rats. Plasma NPY levels were the lowest (65.4 +/- 8.8 fmol/ml, n-10, Mean +/- SEM) in salt-restricted and the highest (151.2 +/- 25 fmol/ml, n-14, p less than 0.02) in salt-loaded animals. Intermediate values were obtained in rats kept on a regular sodium intake (117.6 +/- 20.1 fmol/ml). These findings are therefore compatible with the hypothesis that sodium balance might to some extent influence blood pressure regulation via changes in circulating NPY levels which in turn modify blood pressure responsiveness.