13 resultados para Lethal mutation.

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Mutations in the sulfate transporter gene SLC26A2 (DTDST) cause a continuum of skeletal dysplasia phenotypes that includes achondrogenesis type 1B (ACG1B), atelosteogenesis type 2 (AO2), diastrophic dysplasia (DTD), and recessive multiple epiphyseal dysplasia (rMED). In 1972, de la Chapelle et al reported two siblings with a lethal skeletal dysplasia, which was denoted "neonatal osseous dysplasia" and "de la Chapelle dysplasia" (DLCD). It was suggested that DLCD might be part of the SLC26A2 spectrum of phenotypes, both because of the Finnish origin of the original family and of radiographic similarities to ACG1B and AO2. OBJECTIVE: To test the hypothesis whether SLC26A2 mutations are responsible for DLCD. METHODS: We studied the DNA from the original DLCD family and from seven Finnish DTD patients in whom we had identified only one copy of IVS1+2T>C, the common Finnish mutation. A novel SLC26A2 mutation was found in all subjects, inserted by site-directed mutagenesis in a vector harbouring the SLC26A2 cDNA, and expressed in sulfate transport deficient Chinese hamster ovary (CHO) cells to measure sulfate uptake activity. RESULTS: We identified a hitherto undescribed SLC26A2 mutation, T512K, homozygous in the affected subjects and heterozygous in both parents and in the unaffected sister. T512K was then identified as second pathogenic allele in the seven Finnish DTD subjects. Expression studies confirmed pathogenicity. CONCLUSIONS: DLCD is indeed allelic to the other SLC26A2 disorders. T512K is a second rare "Finnish" mutation that results in DLCD at homozygosity and in DTD when compounded with the milder, common Finnish mutation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119-69G>C, c.161+66A>T and c.875-31G>C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation. This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and the largest family with recessive achromatopsia involving GNAT2; thus, providing a unique opportunity for genotype-phenotype correlation for this extremely rare condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small ubiquitin-like modifier (SUMO) conjugation affects a broad range of processes in plants, including growth, flower initiation, pathogen defense, and responses to abiotic stress. Here, we investigate in vivo and in vitro a SUMO conjugating enzyme with a Cys to Ser change in the active site, and show that it has a dominant negative effect. In planta expression significantly perturbs normal development, leading to growth retardation, early flowering and gene expression changes. We suggest that the mutant protein can serve as a probe to investigate sumoylation, also in plants for which poor genetic infrastructure precludes analysis via loss-of-function mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lynch syndrome is one of the most common hereditary colorectal cancer (CRC) syndrome and is caused by germline mutations of MLH1, MSH2 and more rarely MSH6, PMS2, MLH3 genes. Whereas the absence of MSH2 protein is predictive of Lynch syndrome, it is not the case for the absence of MLH1 protein. The purpose of this study was to develop a sensitive and cost effective algorithm to select Lynch syndrome cases among patients with MLH1 immunohistochemical silencing. Eleven sporadic CRC and 16 Lynch syndrome cases with MLH1 protein abnormalities were selected. The BRAF c.1799T> A mutation (p.Val600Glu) was analyzed by direct sequencing after PCR amplification of exon 15. Methylation of MLH1 promoter was determined by Methylation-Sensitive Single-Strand Conformation Analysis. In patients with Lynch syndrome, there was no BRAF mutation and only one case showed MLH1 methylation (6%). In sporadic CRC, all cases were MLH1 methylated (100%) and 8 out of 11 cases carried the above BRAF mutation (73%) whereas only 3 cases were BRAF wild type (27%). We propose the following algorithm: (1) no further molecular analysis should be performed for CRC exhibiting MLH1 methylation and BRAF mutation, and these cases should be considered as sporadic CRC; (2) CRC with unmethylated MLH1 and negative for BRAF mutation should be considered as Lynch syndrome; and (3) only a small fraction of CRC with MLH1 promoter methylation but negative for BRAF mutation should be true Lynch syndrome patients. These potentially Lynch syndrome patients should be offered genetic counselling before searching for MLH1 gene mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we describe a patient with a phenotype of complete hypogonadotropic hypogonadism who presented primary failure of pulsatile GnRH therapy, but responded to exogenous gonadotropin administration. This patient bore a novel point mutation (T for A) at codon 168 of the gene encoding the GnRH receptor (GnRH-R), resulting in a serine to arginine change in the fourth transmembrane domain of the receptor. This novel mutation was present in the homozygous state in the patient, whereas it was in the heterozygous state in both phenotypically normal parents. When introduced into the complementary DNA coding for the GnRH-R, this mutation resulted in the complete loss of the receptor-mediated signaling response to GnRH. In conclusion, we report the first mutation of the GnRH-R gene that can induce a total loss of function of this receptor and is associated with a phenotype of complete hypogonadotropic hypogonadism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Experimental evidences show that glutathione and its rate-limiting synthesizing enzyme, the glutamate-cysteine ligase (GCL), are involved in the pathogenesis of schizophrenia. Furthermore, genetic association has been previously reported between two single nucleotide polymorphisms lying in noncoding regions of glutamate cysteine ligase modifier (GCLM) gene, which specifies for the modifier subunit of GCL and schizophrenia. OBJECTIVE: We wanted to investigate the presence of GCLM true functional mutations, likely in linkage disequilibrium with the previously identified single nucleotide polymorphism alleles, in the same set of cases that allowed the detection of the original association signal. METHODS: We screened all the coding regions of GCLM and their intronic flanking vicinities in 353 patients with schizophrenia by direct DNA sequencing. RESULTS: Ten sequence variations were identified, five of which were not previously described. None of these DNA changes was within the GCLM coding sequence and in-silico analysis failed to indicate functional impairment induced by these variations. Furthermore, screening of normal controls and downstream statistical analyses revealed no significant relationship of any of these DNA variants with schizophrenia. CONCLUSION: It is unlikely that functional mutations in the GCLM gene could play a major role in genetic predisposition to schizophrenia and further studies will be required to assess its etiological function in the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vax1 and Vax2 have been implicated in eye development and the closure of the choroid fissure in mice and zebrafish. We sequenced the coding exons of VAX1 and VAX2 in 70 patients with anophthalmia/microphthalmia. In VAX1, we observed homozygosity for two successive nucleotide substitutions c.453G>A and c.454C>A, predicting p.Arg152Ser, in a proband of Egyptian origin with microphthalmia, small optic nerves, cleft lip/palate and corpus callosum agenesis. This mutation affects an invariant residue in the homeodomain of VAX1 and was absent from 96 Egyptian controls. It is likely that the mutation results in a loss of function, as the mutation results in a phenotype similar to the Vax1 homozygous null mouse. We did not identify any mutations in VAX2. This is the first description of a phenotype associated with a VAX1 mutation in humans and establishes VAX1 as a new causative gene for anophthalmia/microphthalmia. ©2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic disease for which electrophysiological studies (EPS) have shown to be of limited value.OBJECTIVE This study presents a CPVT family in which marked postpacing repolarization abnormalities during EPS were the only consistent phenotypic manifestation of ryanodine receptor (RyR2) mutation carriers.METHODS The study was prompted by the observation of transient marked QT prolongation preceding initiation of ventricular fibrillation during atrial fibrillation in a boy with a family history of sudden cardiac death (SCD). Family members underwent exercise and pharmacologic electrocardiographic testing with epinephrine, adenosine, and flecainide. Noninvasive clinical test results were normal in 10 patients evaluated, except for both epinephrine- and exercise-induced ventricular arrhythmias in 1. EPS included bursts of ventricular pacing and programmed ventricular extrastimulation reproducing short-long sequences. Genetic screening involved direct sequencing of genes involved in long QT syndrome as well as RyR2.RESULTS Six patients demonstrated a marked increase in QT interval only in the first beat after cessation of ventricular pacing and/or extrastimulation. All 6 patients were found to have a heterozygous missense mutation (M4109R) in RyR2. Two of them, presenting with aborted SCD, also had a second missense mutation (I406T- RyR2). Four family members without RyR2 mutations did not display prominent postpacing QT changes.CONCLUSION M4109R- RyR2 is associated with a high incidence of SCD. The contribution of I406T to the clinical phenotype is unclear. In contrast to exercise testing, marked postpacing repolarization changes in a single beat accurately predicted carriers of M4109R- RyR2 in this family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life-history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human-induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long-term persistence of a population.