259 resultados para Label-free biosensor
em Université de Lausanne, Switzerland
Resumo:
In order to improve the efficacy and safety of treatments, drug dosage needs to be adjusted to the actual needs of each patient in a truly personalized medicine approach. Key for widespread dosage adjustment is the availability of point-of-care devices able to measure plasma drug concentration in a simple, automated, and cost-effective fashion. In the present work, we introduce and test a portable, palm-sized transmission-localized surface plasmon resonance (T-LSPR) setup, comprised of off-the-shelf components and coupled with DNA-based aptamers specific to the antibiotic tobramycin (467 Da). The core of the T-LSPR setup are aptamer-functionalized gold nanoislands (NIs) deposited on a glass slide covered with fluorine-doped tin oxide (FTO), which acts as a biosensor. The gold NIs exhibit localized plasmon resonance in the visible range matching the sensitivity of the complementary metal oxide semiconductor (CMOS) image sensor employed as a light detector. The combination of gold NIs on the FTO substrate, causing NIs size and pattern irregularity, might reduce the overall sensitivity but confers extremely high stability in high-ionic solutions, allowing it to withstand numerous regeneration cycles without sensing losses. With this rather simple T-LSPR setup, we show real-time label-free detection of tobramycin in buffer, measuring concentrations down to 0.5 μM. We determined an affinity constant of the aptamer-tobramycin pair consistent with the value obtained using a commercial propagating-wave based SPR. Moreover, our label-free system can detect tobramycin in filtered undiluted blood serum, measuring concentrations down to 10 μM with a theoretical detection limit of 3.4 μM. While the association signal of tobramycin onto the aptamer is masked by the serum injection, the quantification of the captured tobramycin is possible during the dissociation phase and leads to a linear calibration curve for the concentrations over the tested range (10-80 μM). The plasmon shift following surface binding is calculated in terms of both plasmon peak location and hue, with the latter allowing faster data elaboration and real-time display of the results. The presented T-LSPR system shows for the first time label-free direct detection and quantification of a small molecule in the complex matrix of filtered undiluted blood serum. Its uncomplicated construction and compact size, together with the remarkable performances, represent a leap forward toward effective point-of-care devices for therapeutic drug concentration monitoring.
Resumo:
Abstract We introduce a label-free technology based on digital holographic microscopy (DHM) with applicability for screening by imaging, and we demonstrate its capability for cytotoxicity assessment using mammalian living cells. For this first high content screening compatible application, we automatized a digital holographic microscope for image acquisition of cells using commercially available 96-well plates. Data generated through both label-free DHM imaging and fluorescence-based methods were in good agreement for cell viability identification and a Z'-factor close to 0.9 was determined, validating the robustness of DHM assay for phenotypic screening. Further, an excellent correlation was obtained between experimental cytotoxicity dose-response curves and known IC values for different toxic compounds. For comparable results, DHM has the major advantages of being label free and close to an order of magnitude faster than automated standard fluorescence microscopy.
Resumo:
Abstract We introduce a label-free technology based on digital holographic microscopy (DHM) with applicability for screening by imaging, and we demonstrate its capability for cytotoxicity assessment using mammalian living cells. For this first high content screening compatible application, we automatized a digital holographic microscope for image acquisition of cells using commercially available 96-well plates. Data generated through both label-free DHM imaging and fluorescence-based methods were in good agreement for cell viability identification and a Z'-factor close to 0.9 was determined, validating the robustness of DHM assay for phenotypic screening. Further, an excellent correlation was obtained between experimental cytotoxicity dose-response curves and known IC values for different toxic compounds. For comparable results, DHM has the major advantages of being label free and close to an order of magnitude faster than automated standard fluorescence microscopy.
Resumo:
Cancer is a major burden in today's society and one of the leading causes of death in industrialised countries. Various avenues for the detection of cancer exist, most of which rely on standard methods, such as histology, ELISA, and PCR. Here we put the focus on nanomechanical biosensors derived from atomic force microscopy cantilevers. The versatility of this novel technology has been demonstrated in different applications and in some ways surpasses current technologies, such as microarray, quartz crystal microbalance and surface plasmon resonance. The technology enables label free biomarker detection without the necessity of target amplification in a total cellular background, such as BRAF mutation analysis in malignant melanoma. A unique application of the cantilever array format is the analysis of conformational dynamics of membrane proteins associated to surface stress changes. Another development is characterisation of exhaled breath which allows assessment of a patient's condition in a non-invasive manner.
Resumo:
Red blood cell (RBC) parameters such as morphology, volume, refractive index, and hemoglobin content are of great importance for diagnostic purposes. Existing approaches require complicated calibration procedures and robust cell perturbation. As a result, reference values for normal RBC differ depending on the method used. We present a way for measuring parameters of intact individual RBCs by using digital holographic microscopy (DHM), a new interferometric and label-free technique with nanometric axial sensitivity. The results are compared with values achieved by conventional techniques for RBC of the same donor and previously published figures. A DHM equipped with a laser diode (lambda = 663 nm) was used to record holograms in an off-axis geometry. Measurements of both RBC refractive indices and volumes were achieved via monitoring the quantitative phase map of RBC by means of a sequential perfusion of two isotonic solutions with different refractive indices obtained by the use of Nycodenz (decoupling procedure). Volume of RBCs labeled by membrane dye Dil was analyzed by confocal microscopy. The mean cell volume (MCV), red blood cell distribution width (RDW), and mean cell hemoglobin concentration (MCHC) were also measured with an impedance volume analyzer. DHM yielded RBC refractive index n = 1.418 +/- 0.012, volume 83 +/- 14 fl, MCH = 29.9 pg, and MCHC 362 +/- 40 g/l. Erythrocyte MCV, MCH, and MCHC achieved by an impedance volume analyzer were 82 fl, 28.6 pg, and 349 g/l, respectively. Confocal microscopy yielded 91 +/- 17 fl for RBC volume. In conclusion, DHM in combination with a decoupling procedure allows measuring noninvasively volume, refractive index, and hemoglobin content of single-living RBCs with a high accuracy.
Resumo:
Among pollutants released into the environment by human activities, residues of pharmaceuticals are an increasing matter of concern because of their potential impact on ecosystems. The aim of this study was to analyze differences of protein expression resulting from acute (2 days) and middle-term (7 days) exposure of aquatic microcrustacean Daphnia pulex to the anticancer drug tamoxifen. Using a liquid chromatography-mass spectrometry shotgun approach, about 4000 proteins could be identified, providing the largest proteomics data set of D. pulex published up to now. Considering both time points and tested concentrations, 189 proteins showed a significant fold change. The identity of regulated proteins suggested a decrease in translation, an increase in protein degradation and changes in carbohydrate and lipid metabolism as the major effects of the drug. Besides these impacted processes, which reflect a general stress response of the organism, some other regulated proteins play a role in Daphnia reproduction. These latter results are in accordance with our previous observations of the impact of tamoxifen on D. pulex reproduction and illustrate the potential of ecotoxicoproteomics to unravel links between xenobiotic effects at the biochemical and organismal levels. Data are available via ProteomeXchange with identifier PXD001257.
Resumo:
Dendritic cell (DC) populations consist of multiple subsets that are essential orchestrators of the immune system. Technological limitations have so far prevented systems-wide accurate proteome comparison of rare cell populations in vivo. Here, we used high-resolution mass spectrometry-based proteomics, combined with label-free quantitation algorithms, to determine the proteome of mouse splenic conventional and plasmacytoid DC subsets to a depth of 5,780 and 6,664 proteins, respectively. We found mutually exclusive expression of pattern recognition pathways not previously known to be different among conventional DC subsets. Our experiments assigned key viral recognition functions to be exclusively expressed in CD4(+) and double-negative DCs. The CD8alpha(+) DCs largely lack the receptors required to sense certain viruses in the cytoplasm. By avoiding activation via cytoplasmic receptors, including retinoic acid-inducible gene I, CD8alpha(+) DCs likely gain a window of opportunity to process and present viral antigens before activation-induced shutdown of antigen presentation pathways occurs.
Resumo:
Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.
Resumo:
Proteomics has come a long way from the initial qualitative analysis of proteins present in a given sample at a given time ("cataloguing") to large-scale characterization of proteomes, their interactions and dynamic behavior. Originally enabled by breakthroughs in protein separation and visualization (by two-dimensional gels) and protein identification (by mass spectrometry), the discipline now encompasses a large body of protein and peptide separation, labeling, detection and sequencing tools supported by computational data processing. The decisive mass spectrometric developments and most recent instrumentation news are briefly mentioned accompanied by a short review of gel and chromatographic techniques for protein/peptide separation, depletion and enrichment. Special emphasis is placed on quantification techniques: gel-based, and label-free techniques are briefly discussed whereas stable-isotope coding and internal peptide standards are extensively reviewed. Another special chapter is dedicated to software and computing tools for proteomic data processing and validation. A short assessment of the status quo and recommendations for future developments round up this journey through quantitative proteomics.
Resumo:
Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.
Resumo:
Many organelles exist in an equilibrium of fragmentation into smaller units and fusion into larger structures, which is coordinated with cell division, the increase in cell mass, and envi¬ronmental conditions. In yeast cells, organelle homeostasis can be studied using the yeast vacuole (lysosome) as a model system. Yeast vacuoles are the main compartment for degrada¬tion of cellular proteins and storage of nutrients, ions and metabolites. Fission and fusion of vacuoles can be induced by hyper- and hypotonic shock in vivo, respectively, and have also been reconstituted in vitro using isolated vacuoles. The conserved serine/threonine kinase TOR (target of rapamycin) is a central nutrient sensor and regulates cell growth and metabolism. In yeast, there are two TOR proteins, Torlp and Tor2p, which are part of larger protein complexes, TORCI and TORC2. Only TORCI is rapamycin-sensitive. Disregulation of TOR signaling is linked to a multitude of diseases in humans, e.g. cancer, neurodegenerative diseases and metabolic syndrome. It has been shown that TORCI localizes to the vacuole membrane, and recent findings of our laboratory demonstrated that TORCI positively regulates vacuole fragmentation. This suggests that the fragmentation machinery should contain target proteins phosphorylated by TORCI. I explored the rapamycin-and fission-dependent vacuolar phosphoproteome during frag¬mentation, using a label-free mass-spectrometry approach. I identified many vacuolar factors whose phosphorylation was downregulated in a TORCI- and fission-dependent manner. Among them were known protein complexes that are functionally linked to fission or fusion, like the HOPS, VTC and FAB1 complexes. Hence, TORCI-dependent phosphorylations might positively regulate vacuole fission. Several candidates were chosen for detailed microscopic analysis of in vivo vacuole frag-mentation, using deletion mutants. I was able to identify novel factors not previously linked to fission phenotypes, e.g. the SEA complex, Pib2, and several vacuolar amino acid transporters. Transport of neutral and basic amino acids across the membrane seems to control vacuole fission, possibly via TORCI. I analyzed vacuolar fluxes of amino acids in wildtype yeast cells and found evidence for a selective vacuolar export of basic amino acids upon hyperosmotic stress. This leads me to propose a model where vacuolar export of amino acids is necessary to reshape the organelle under salt stress. - Le nombre et la taille de certaines organelles peut être déterminé par un équilibre entre la fragmentation qui produit des unités plus petites et la fusion qui génère des structures plus larges. Cet équilibre est coordonné avec la division cellulaire, l'augmentation de la masse cellulaire, et les conditions environnementales. Dans des cellules de levure, l'homéostasie des organelles peut être étudié à l'aide d'un système modèle, la vacuole de levure (lysosome). Les vacuoles constituent le principal compartiment de la dégradation des protéines et de stockage des nutriments, des ions et des métabolites. La fragmentation et la fusion des vacuoles peuvent être respectivement induites par un traitement hyper- ou hypo-tonique dans les cellules vivantes. Ces processus ont également été reconstitués in vitro en utilisant des vacuoles isolées. La sérine/thréonine kinase conservée TOR (target of rapamycin/cible de la rapamycine) est un senseur de nutriments majeur qui régule la croissance cellulaire et le métabolisme. Chez la levure, il existe deux protéines TOR, Torlp et Tor2p, qui sont les constituants de plus grands complexes de protéines, TORCI et TORC2. TORCI est spécifiquement inhibé par la rapamycine. Une dysrégulation de la signalisation de TOR est liée à une multitude de maladies chez l'homme comme le cancer, les maladies neurodégénératives et le syndrome métabolique. Il a été montré que TORCI se localise à la membrane vacuolaire et les découvertes récentes de notre laboratoire ont montré que TORCI régule positivement la fragmentation de la vacuole. Ceci suggère que le mécanisme de fragmentation doit être contrôlé par la phosphorylation de certaines protéines cibles de TORCI. J'ai exploré le phosphoprotéome vacuolaire lors de la fragmentation, en présence ou absence de rapamycine et dans des conditions provoquant la fragmentation des organelles. La méthode choisie pour réaliser la première partie de ce projet a été la spectrométrie de masse différentielle sans marquage. J'ai ainsi identifié plusieurs facteurs vacuolaires dont la phosphorylation est régulée d'une manière dépendante de TORCI et de la fragmentation. Parmi ces facteurs, des complexes protéiques connus qui sont fonctionnellement liées à fragmentation ou la fusion, comme les complexes HOPS, VTC et FAB1 ont été mis en évidence. Par conséquent, la phosphorylation dépendante de TORCI peut réguler positivement la fragmentation des vacuoles. Plusieurs candidats ont été choisis pour une analyse microscopique détaillée de la fragmentation vacuolaire in vivo en utilisant des mutants de délétion. J'ai été en mesure d'identifier de nouveaux facteurs qui n'avaient pas été encore associés à des phénotypes de fragmentation tels que les complexes SEA, Pib2p, ainsi que plusieurs transporteurs vacuolaires d'acides aminés. Le transport des acides aminés à travers la membrane semble contrôler la fragmentation de la vacuole. Puisque ces transporteurs sont phosphorylés par TORCI, ces résultats semblent confirmer la
Resumo:
BACKGROUND & AIM: Brain metastases are frequent in patients with metastatic melanoma, indicating poor prognosis. We investigated the BRAF kinase inhibitor vemurafenib in patients with advanced melanoma with symptomatic brain metastases. METHODS: This open-label trial assessed vemurafenib (960mg twice a day) in patients with BRAF(V600) mutation-positive metastatic melanoma with non-resectable, previously treated brain metastases. The primary end-point was safety. Secondary end-points included best overall response rate, and progression-free and overall survival. RESULTS: Twenty-four patients received vemurafenib for a median treatment duration of 3.8 (0.1-11.3) months. The majority of discontinuations were due to disease progression (n=22). Twenty-three of 24 patients reported at least one adverse event (AE). Grade 3 AEs were reported in four (17%; 95% confidence interval [CI], 4.7-37.4%) patients and included cutaneous squamous cell carcinoma in four patients. Median progression-free survival was 3.9 (95% CI, 3.0-5.5) months, and median survival was 5.3 (95% CI, 3.9-6.6) months. An overall partial response (PR) at both intracranial and extracranial sites was achieved in 10 of 24 (42%; 95% CI, 22.1-63.4) evaluable patients, with stable disease in nine (38%; 95% CI, 18.8-59.4) patients. Of 19 patients with measurable intracranial disease, seven (37%) achieved >30% intracranial tumour regression, and three (16%; 95% CI, 3.4-39.6%) achieved a confirmed PR. Other signs of improvement included reduced need for corticosteroids and enhanced performance status. CONCLUSIONS: Vemurafenib can be safely used in patients with advanced symptomatic melanoma that has metastasised to the brain and can result in meaningful tumour regression.
Resumo:
BACKGROUND: Concomitant chemoradiotherapy and accelerated radiotherapy independently improve outcomes for patients with locally advanced head and neck squamous-cell carcinoma (HNSCC). We aimed to assess the efficacy and safety of a combination of these approaches. METHODS: In our open-label phase 3 randomised trial, we enrolled patients with locally advanced, stage III and IV (non-metastatic) HNSCC and an Eastern Cooperative Oncology Group performance status of 0-2. We randomly allocated patients centrally with a computer program (with centre, T stage, N stage, and localisation as minimisation factors) in a 1:1:1 ratio to receive conventional chemoradiotherapy (70 Gy in 7 weeks plus three cycles of 4 days' concomitant carboplatin-fluorouracil), accelerated radiotherapy-chemotherapy (70 Gy in 6 weeks plus two cycles of 5 days' concomitant carboplatin-fluorouracil), or very accelerated radiotherapy alone (64·8 Gy [1·8 Gy twice daily] in 3·5 weeks). The primary endpoint, progression-free survival (PFS), was assessed in all enrolled patients. This trial is completed. The trial is registered with ClinicalTrials.gov, number NCT00828386. FINDINGS: Between Feb 29, 2000, and May 9, 2007, we randomly allocated 279 patients to receive conventional chemoradiotherapy, 280 to accelerated radiotherapy-chemotherapy, and 281 to very accelerated radiotherapy. Median follow-up was 5·2 years (IQR 4·9-6·2); rates of chemotherapy and radiotherapy compliance were good in all groups. Accelerated radiotherapy-chemotherapy offered no PFS benefit compared with conventional chemoradiotherapy (HR 1·02, 95% CI 0·84-1·23; p=0·88) or very accelerated radiotherapy (0·83, 0·69-1·01; p=0·060); conventional chemoradiotherapy improved PFS compared with very accelerated radiotherapy (0·82, 0·67-0·99; p=0·041). 3-year PFS was 37·6% (95% CI 32·1-43·4) after conventional chemoradiotherapy, 34·1% (28·7-39·8) after accelerated radiotherapy-chemotherapy, and 32·2% (27·0-37·9) after very accelerated radiotherapy. More patients in the very accelerated radiotherapy group had RTOG grade 3-4 acute mucosal toxicity (226 [84%] of 268 patients) compared with accelerated radiotherapy-chemotherapy (205 [76%] of 271 patients) or conventional chemoradiotherapy (180 [69%] of 262; p=0·0001). 158 (60%) of 265 patients in the conventional chemoradiotherapy group, 176 (64%) of 276 patients in the accelerated radiotherapy-chemotherapy group, and 190 (70%) of 272 patients in the very accelerated radiotherapy group were intubated with feeding tubes during treatment (p=0·045). INTERPRETATION: Chemotherapy has a substantial treatment effect given concomitantly with radiotherapy and acceleration of radiotherapy cannot compensate for the absence of chemotherapy. We noted the most favourable outcomes for conventional chemoradiotherapy, suggesting that acceleration of radiotherapy is probably not beneficial in concomitant chemoradiotherapy schedules. FUNDING: French Ministry of Health.
Resumo:
BACKGROUND: The outcome of diffuse large B-cell lymphoma has been substantially improved by the addition of the anti-CD20 monoclonal antibody rituximab to chemotherapy regimens. We aimed to assess, in patients aged 18-59 years, the potential survival benefit provided by a dose-intensive immunochemotherapy regimen plus rituximab compared with standard treatment plus rituximab. METHODS: We did an open-label randomised trial comparing dose-intensive rituximab, doxorubicin, cyclophosphamide, vindesine, bleomycin, and prednisone (R-ACVBP) with subsequent consolidation versus standard rituximab, doxorubicin, cyclophosphamide, vincristine, and prednisone (R-CHOP). Random assignment was done with a computer-assisted randomisation-allocation sequence with a block size of four. Patients were aged 18-59 years with untreated diffuse large B-cell lymphoma and an age-adjusted international prognostic index equal to 1. Our primary endpoint was event-free survival. Our analyses of efficacy and safety were of the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT00140595. FINDINGS: One patient withdrew consent before treatment and 54 did not complete treatment. After a median follow-up of 44 months, our 3-year estimate of event-free survival was 81% (95% CI 75-86) in the R-ACVBP group and 67% (59-73) in the R-CHOP group (hazard ratio [HR] 0·56, 95% CI 0·38-0·83; p=0·0035). 3-year estimates of progression-free survival (87% [95% CI, 81-91] vs 73% [66-79]; HR 0·48 [0·30-0·76]; p=0·0015) and overall survival (92% [87-95] vs 84% [77-89]; HR 0·44 [0·28-0·81]; p=0·0071) were also increased in the R-ACVBP group. 82 (42%) of 196 patients in the R-ACVBP group experienced a serious adverse event compared with 28 (15%) of 183 in the R-CHOP group. Grade 3-4 haematological toxic effects were more common in the R-ACVBP group, with a higher proportion of patients experiencing a febrile neutropenic episode (38% [75 of 196] vs 9% [16 of 183]). INTERPRETATION: Compared with standard R-CHOP, intensified immunochemotherapy with R-ACVBP significantly improves survival of patients aged 18-59 years with diffuse large B-cell lymphoma with low-intermediate risk according to the International Prognostic Index. Haematological toxic effects of the intensive regimen were raised but manageable. FUNDING: Groupe d'Etudes des Lymphomes de l'Adulte and Amgen.
Resumo:
We present a viscometric affinity biosensor that can potentially allow continuous multi-analyte monitoring in biological fluids like blood or plasma. The sensing principle is based on the detection of viscosity changes of a polymeric solution which has a selective affinity for the analyte of interest. The chemico-mechanical sensor incorporates an actuating piezoelectric diaphragm, a sensing piezoelectric diaphragm and a flow-resisting microchannel for viscosity detection. A free-standing Anodic Alumina Oxide (AAO) porous nano-membrane is used as selective interface. A glucose-sensitive sensor was fabricated and extensively assessed in buffer solution. The sensor reversibility, stability and sensitivity were excellent during at least 65 hours. Results showed also a good degree of stability for a long term measurement (25 days). The sensor behaviour was furthermore tested in fetal bovine serum (FBS). The obtained results for glucose sensing are very promising, indicating that the developed sensor is a candidate for continuous monitoring in biological fluids. Sensitive solutions for ionized calcium and pH are currently under development and should allow multi-analyte sensing in the near future.