84 resultados para KINETIC PARAMETERS
em Université de Lausanne, Switzerland
Resumo:
Hsp70-Hsp40-NEF and possibly Hsp100 are the only known molecular chaperones that can use the energy of ATP to convert stably pre-aggregated polypeptides into natively refolded proteins. However, the kinetic parameters and ATP costs have remained elusive because refolding reactions have only been successful with a molar excess of chaperones over their polypeptide substrates. Here we describe a stable, misfolded luciferase species that can be efficiently renatured by substoichiometric amounts of bacterial Hsp70-Hsp40-NEF. The reactivation rates increased with substrate concentration and followed saturation kinetics, thus allowing the determination of apparent V(max)' and K(m)' values for a chaperone-mediated renaturation reaction for the first time. Under the in vitro conditions used, one Hsp70 molecule consumed five ATPs to effectively unfold a single misfolded protein into an intermediate that, upon chaperone dissociation, spontaneously refolded to the native state, a process with an ATP cost a thousand times lower than expected for protein degradation and resynthesis.
Resumo:
The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.
Resumo:
OBJECTIVE: The reverse transcriptase inhibitor efavirenz is currently used at a fixed dose of 600 mg/d. However, dosage individualization based on plasma concentration monitoring might be indicated. This study aimed to assess the efavirenz pharmacokinetic profile and interpatient versus intrapatient variability in patients who are positive for human immunodeficiency virus, to explore the relationship between drug exposure, efficacy, and central nervous system toxicity and to build up a Bayesian approach for dosage adaptation. METHODS: The population pharmacokinetic analysis was performed by use of NONMEM based on plasma samples from a cohort of unselected patients receiving efavirenz. With the use of a 1-compartment model with first-order absorption, the influence of demographic and clinical characteristics on oral clearance and oral volume of distribution was examined. The average drug exposure during 1 dosing interval was estimated for each patient and correlated with markers of efficacy and toxicity. The population kinetic parameters and the variabilities were integrated into a Bayesian equation for dosage adaptation based on a single plasma sample. RESULTS: Data from 235 patients with a total of 719 efavirenz concentrations were collected. Oral clearance was 9.4 L/h, oral volume of distribution was 252 L, and the absorption rate constant was 0.3 h(-1). Neither the demographic covariates evaluated nor the comedications showed a clinically significant influence on efavirenz pharmacokinetics. A large interpatient variability was found to affect efavirenz relative bioavailability (coefficient of variation, 54.6%), whereas the intrapatient variability was small (coefficient of variation, 26%). An inverse correlation between average drug exposure and viral load and a trend with central nervous system toxicity were detected. This enabled the derivation of a dosing adaptation strategy suitable to bring the average concentration into a therapeutic target from 1000 to 4000 microg/L to optimize viral load suppression and to minimize central nervous system toxicity. CONCLUSIONS: The high interpatient and low intrapatient variability values, as well as the potential relationship with markers of efficacy and toxicity, support the therapeutic drug monitoring of efavirenz. However, further evaluation is needed before individualization of an efavirenz dosage regimen based on routine drug level monitoring should be recommended for optimal patient management.
Resumo:
Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (G(brain)) as function of plasma glucose (G(plasma)) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant K(t), apparent maximum rate constant T(max), glucose consumption rate CMR(glc), and the iso-inhibition constant K(ii) that suggests G(brain) as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where G(brain) was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by K(t) ranging from 1.5 to 3.5 mM, T(max)/CMR(glc) from 4.6 to 5.6, and K(ii) from 51 to 149 mM. It was noteworthy that K(t) was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by G(brain), predicting that G(brain) eventually approaches a maximum concentration. However, since K(ii) largely exceeds G(plasma), iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.
Resumo:
Contact aureoles provide an excellent geologic environment to study the mechanisms of metamorphic reactions in a natural system. The Torres del Paine (TP) intrusion is one of the most spectacular natural laboratories because of its excellent outcrop conditions. It formed in a period from 12.59 to 12.43 Ma and consists of three large granite and four smaller mafic batches. The oldest granite is on top, the youngest at the bottom of the granitic complex, and the granites overly the mafic laccolith. The TP intruded at a depth of 2-3 km into regional metamorphic anchizone to greenschist facies pelites, sandstones, and conglomerates of the Cerro Toro and Punta Barrosa formations. It formed a thin contact aureole of 150-400 m width. This thesis focuses on the reaction kinetics of the mineral cordierite in the contact aureole using quantitative textural analysis methods. First cordierite was formed from chlorite break¬down (zone I, ca. 480 °C, 750 bar). The second cordierite forming reaction was the muscovite break-down, which is accompanied by a modal decrease in biotite and the appearance of k- feldspar (zone II, 540-550 °C, 750 bar). Crystal sizes of the roundish, poikiloblastic cordierites were determined from microscope thin section images by manually marking each crystal. Images were then automatically processed with Matlab. The correction for the intersection probability of each crystal radius yields the crystal size distribution in the rock. Samples from zone I below the laccolith have the largest crystals (0.09 mm). Cordierites from zone II are smaller, with a maximum crystal radius of 0.057 mm. Rocks from zone II have a larger number of small cordierite crystals than rocks from zone I. A combination of these quantitative analysis with numerical modeling of nucleation and growth, is used to infer nucleation and growth parameters which are responsible for the observed mineral textures. For this, the temperature-time paths of the samples need to be known. The thermal history is complex because the main body of the intrusion was formed by several intrusive batches. The emplacement mechanism and duration of each batch can influence the thermal structure in the aureole. A possible subdivision of batches in smaller increments, so called pulses, will focus heat at the side of the intrusion. Focusing all pulses on one side increases the contact aureole size on that side, but decreases it on the other side. It forms a strongly asymmetric contact aureole. Detailed modeling shows that the relative thicknesses of the TP contact aureole above and below the intrusion (150 and 400 m) are best explained by a rapid emplacement of at least the oldest granite batch. Nevertheless, temperatures are significantly too low in all models, compared to observed mineral assemblages in the hornfelses. Hence, an other important thermal mechanisms needs to take place in the host rock. Clastic minerals in the immature sediments outside the contact aureole are hydrated due to small amounts of expelled fluids during contact metamorphism. This leads to a temperature increase of up to 50 °C. The origin of fluids can be traced by stable isotopes. Whole rock stable isotope data (6D and δ180) and chlorine concentrations in biotite document that the TP intrusion induced only very small amounts of fluid flow. Oxygen whole rock data show δ180 values between 9.0 and 10.0 %o within the first 5 m of the contact. Values increase to 13.0 - 15.0 %o further away from the intrusion. Whole rock 6D values display a more complex zoning. First, host rock values (-90 to -70 %o) smoothly decrease towards the contact by ca. 20 %o, up to a distance of ca. 150 m. This is followed by an increase of ca. 20 %o within the innermost 150 m of the aureole (-97.0 to -78 %o at the contact). The initial decrease in 6D values is interpreted to be due to Rayleigh fractionation accompanying the dehydration reactions forming cordierite, while the final increase reflects infiltration of water-rich fluids from the intrusion. An over-estimate on the quantity and the corresponding thermal effect yields a temperature increase of less than 30 °C. This suggests that fluid flow might have contributed only for a small amount to the thermal evolution of the system. A combination of the numerical growth model with the thermal model, including the hydration reaction enthalpies but neglecting fluid flow and incremental growth, can be used to numerically reproduce the observed cordierite textures in the contact aureole. This yields kinetic parameters which indicate fast cordierite crystallization before the thermal peak in the inner aureole, and continued reaction after the thermal peak in the outermost aureole. Only small temperature dependencies of the kinetic parameters seem to be needed to explain the obtained crystal size data. - Les auréoles de contact offrent un cadre géologique privilégié pour l'étude des mécanismes de réactions métamorphiques associés à la mise en place de magmas dans la croûte terrestre. Par ses conditions d'affleurements excellentes, l'intrusion de Torres del Paine représente un site exceptionnel pour améliorer nos connaissances de ces processus. La formation de cette intrusion composée de trois injections granitiques principales et de quatre injections mafiques de volume inférieur couvre une période allant de 12.50 à 12.43 Ma. Le plus vieux granite forme la partie sommitale de l'intrusion alors que l'injection la plus jeune s'observe à la base du complexe granitique; les granites recouvrent la partie mafique du laccolite. L'intrusion du Torres del Paine s'est mise en place a 2-3 km de profondeur dans un encaissant métamorphique. Cet encaissant est caractérisé par un métamorphisme régional de faciès anchizonal à schiste vert et est composé de pélites, de grès, et des conglomérats des formations du Cerro Toro et Punta Barrosa. La mise en place des différentes injections granitiques a généré une auréole de contact de 150-400 m d'épaisseur autour de l'intrusion. Cette thèse se concentre sur la cinétique de réaction associée à la formation de la cordiérite dans les auréoles de contact en utilisant des méthodes quantitatives d'analyses de texture. On observe plusieurs générations de cordiérite dans l'auréole de contact. La première cordiérite est formée par la décomposition de la chlorite (zone I, environ 480 °C, 750 bar), alors qu'une seconde génération de cordiérite est associée à la décomposition de la muscovite, laquelle est accompagnée par une diminution modale de la teneur en biotite et l'apparition de feldspath potassique (zone II, 540-550 °C, 750 bar). Les tailles des cristaux de cordiérites arrondies et blastic ont été déterminées en utilisant des images digitalisées des lames minces et en marquant individuellement chaque cristal. Les images sont ensuite traitées automatiquement à l'aide du programme Matlab. La correction de la probabilité d'intersection en fonction du rayon des cristaux permet de déterminer la distribution de la taille des cristaux dans la roche. Les échantillons de la zone I, en dessous du lacolite, sont caractérisés par de relativement grands cristaux (0.09 mm). Les cristaux de cordiérite de la zone II sont plus petits, avec un rayon maximal de 0.057 mm. Les roches de la zone II présentent un plus grand nombre de petits cristaux de cordiérite que les roches de la zone I. Une combinaison de ces analyses quantitatives avec un modèle numérique de nucléation et croissance a été utilisée pour déduire les paramètres de nucléation et croissance contrôlant les différentes textures minérales observées. Pour développer le modèle de nucléation et de croissance, il est nécessaire de connaître le chemin température - temps des échantillons. L'histoire thermique est complexe parce que l'intrusion est produite par plusieurs injections successives. En effet, le mécanisme d'emplace¬ment et la durée de chaque injection peuvent influencer la structure thermique dans l'auréole. Une subdivision des injections en plus petits incréments, appelés puises, permet de concentrer la chaleur dans les bords de l'intrusion. Une mise en place préférentielle de ces puises sur un côté de l'intrusion modifie l'apport thermique et influence la taille de l'auréole de contact produite, auréole qui devient asymétrique. Dans le cas de la première injection de granite, une modélisation détaillée montre que l'épaisseur relative de l'auréole de contact de Torres del Paine au-dessus et en dessous de l'intrusion (150 et 400 m) est mieux expliquée par un emplacement rapide du granite. Néanmoins, les températures calculées dans l'auréole de con¬tact sont trop basses pour que les modèles thermiques soient cohérants par rapport à la taille de cette auréole. Ainsi, un autre mecanisme exothermique est nécessaire pour permettre à la roche encais¬sante de produire les assemblages observés. L'observation des roches encaissantes entourant les granites montre que les minéraux clastiques dans les sédiments immatures au-dehors de l'auréole sont hydratés suite à la petite quantité de fluide expulsée durant le métamorphisme de contact et/ou la mise en place des granites. Les réactions d'hydratation peuvent permettre une augmentation de la température jusqu'à 50 °C. Afin de déterminer l'origine des fluides, une étude isotopique de roches de l'auréole de contact a été entreprise. Les isotopes stables d'oxygène et d'hydrogène sur la roche totale ainsi que la concentration en chlore dans la biotite indiquent que la mise en place des granites du Torres del Paine n'induit qu'une circulation de fluide limitée. Les données d'oxygène sur roche totale montrent des valeurs δ180 entre 9.0 et 10.0%o au sein des cinq premiers mètres du contact. Les valeurs augmentent jusqu'à 13.0 - 15.0 plus on s'éloigne de l'intrusion. Les valeurs 5D sur roche totale montrent une zonation plus complexe. Les valeurs de la roche encaissante (-90 à -70%o) diminuent progressivement d'environ 20%o depuis l'extérieur de l'auréole jusqu'à une distance d'environ 150 m du granite. Cette diminution est suivie par une augmentation d'environ 20%o au sein des 150 mètres les plus proches du contact (-97.0 à -78%o au contact). La diminution initiale des valeurs de 6D est interprétée comme la conséquence du fractionnement de Rayleigh qui accompagne les réactions de déshydratation formant la cordiérite, alors que l'augmentation finale reflète l'infiltration de fluide riche en eau venant de l'intrusion. A partir de ces résultats, le volume du fluide issu du granite ainsi que son effet thermique a pu être estimé. Ces résultats montrent que l'augmentation de température associée à ces fluides est limitée à un maximum de 30 °C. La contribution de ces fluides dans le bilan thermique est donc faible. Ces différents résultats nous ont permis de créer un modèle thermique associé à la for¬mation de l'auréole de contact qui intègre la mise en place rapide du granite et les réactions d'hydratation lors du métamorphisme. L'intégration de ce modèle thermique dans le modèle numérique de croissance minérale nous permet de calculer les textures des cordiérites. Cepen¬dant, ce modèle est dépendant de la vitesse de croissance et de nucléation de ces cordiérites. Nous avons obtenu ces paramètres en comparant les textures prédites par le modèle et les textures observées dans les roches de l'auréole de contact du Torres del Paine. Les paramètres cinétiques extraits du modèle optimisé indiquent une cristallisation rapide de la cordiérite avant le pic thermique dans la partie interne de l'auréole, et une réaction continue après le pic thermique dans la partie la plus externe de l'auréole. Seules de petites dépendances de température des paramètres de cinétique semblent être nécessaires pour expliquer les don¬nées obtenues sur la distribution des tailles de cristaux. Ces résultats apportent un éclairage nouveau sur la cinétique qui contrôle les réactions métamorphiques.
Resumo:
Mathematical methods combined with measurements of single-cell dynamics provide a means to reconstruct intracellular processes that are only partly or indirectly accessible experimentally. To obtain reliable reconstructions, the pooling of measurements from several cells of a clonal population is mandatory. However, cell-to-cell variability originating from diverse sources poses computational challenges for such process reconstruction. We introduce a scalable Bayesian inference framework that properly accounts for population heterogeneity. The method allows inference of inaccessible molecular states and kinetic parameters; computation of Bayes factors for model selection; and dissection of intrinsic, extrinsic and technical noise. We show how additional single-cell readouts such as morphological features can be included in the analysis. We use the method to reconstruct the expression dynamics of a gene under an inducible promoter in yeast from time-lapse microscopy data.
Resumo:
Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction. In this context, cells having essentially an oxidative profile exhibit pronounced extracellular lactate uptake and consumption. However, they can be turned into cells with prominent aerobic glycolysis by selectively reducing the aforementioned parameters. In the case of primarily oxidative cells, we also examined the role of glycolysis and lactate transport in providing pyruvate to mitochondria in order to sustain oxidative phosphorylation. The results show that changes in lactate transport capacity and extracellular lactate concentration within the range described experimentally can sustain enhanced oxidative metabolism upon activation. Such a demonstration provides key elements to understand why certain brain cell types constitutively adopt a particular metabolic profile and how specific features can be altered under different physiological and pathological conditions in order to face evolving energy demands.
Resumo:
The main objective of the study was to examine the biotransformation of the anticancer drug imatinib in target cells by incubating it with oxidoreductases expressed in tumor cells. The second objective was to obtain an in silico prediction of the potential activity of imatinib metabolites. An in vitro enzyme kinetic study was performed with cDNA expressed human oxidoreductases and LC-MS/MS analysis. The kinetic parameters (Km and Vmax) were determined for six metabolites. A molecular modeling approach was used to dock these metabolites to the target Abl or Bcr-Abl kinases. CYP3A4 isozyme showed the broadest metabolic capacity, whereas CYP1A1, CYP1B1 and FMO3 isozymes biotransformed imatinib with a high intrinsic clearance. The predicted binding modes for the metabolites to Abl were comparable to that of the parent drug, suggesting potential activity. These findings indicate that CYP1A1 and CYP1B1, which are known to be overexpressed in a wide range of tumors, are involved in the biotransformation of imatinib. They could play a role in imatinib disposition in the targeted stem, progenitor and differentiated cancer cells, with a possible contribution of the metabolites toward the activity of the drug.
Resumo:
BACKGROUND: Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. RESULTS: The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. CONCLUSION: The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel.
Resumo:
This study aimed to investigate the effects on a possible improvement in aerobic and anaerobic performance of oral terbutaline (TER) at a supra-therapeutic dose in 7 healthy competitive male athletes. On day 1, ventilatory threshold, maximum oxygen uptake [Formula: see text] and corresponding power output were measured and used to determine the exercise load on days 2 and 3. On days 2 and 3, 8 mg of TER or placebo were orally administered in a double-blind process to athletes who rested for 3 h, and then performed a battery of tests including a force-velocity exercise test, running sprint and a maximal endurance cycling test at Δ50 % (50 % between VT and [Formula: see text]). Lactatemia, anaerobic parameters and endurance performance ([Formula: see text] and time until exhaustion) were raised during the corresponding tests. We found that TER administration did not improve any of the parameters of aerobic performance (p > 0.05). In addition, no change in [Formula: see text] kinetic parameters was found with TER compared to placebo (p > 0.05). Moreover, no enhancement of the force-velocity relationship was observed during sprint exercises after TER intake (p > 0.05) and, on the contrary, maximal strength decreased significantly after TER intake (p < 0.05) but maximal power remained unchanged (p > 0.05). In conclusion, oral acute administration of TER at a supra-therapeutic dose seems to be without any relevant ergogenic effect on anaerobic and aerobic performances in healthy athletes. However, all participants experienced adverse side effects such as tremors.
Resumo:
(1R)-Normetanephrine is the natural stereoisomeric substrate for sulfotransferase 1A3 (SULT1A3)-catalyzed sulfonation. Nothing appears known on the enantioselectivity of the reaction despite its potential significance in the metabolism of adrenergic amines and in clinical biochemistry. We confronted the kinetic parameters of the sulfoconjugation of synthetic (1R)-normetanephrine and (1S)-normetanephrine by recombinant human SULT1A3 to a docking model of each normetanephrine enantiomer with SULT1A3 and the 3'-phosphoadenosine-5'-phosphosulfate cofactor on the basis of molecular modeling and molecular dynamics simulations of the stability of the complexes. The K(M) , V(max) , and k(cat) values for the sulfonation of (1R)-normetanephrine, (1S)-normetanephrine, and racemic normetanephrine were similar. In silico models were consistent with these findings as they showed that the binding modes of the two enantiomers were almost identical. In conclusion, SULT1A3 is not substrate-enantioselective toward normetanephrine, an unexpected finding explainable by a mutual adaptability between the ligands and SULT1A3 through an "induced-fit model" in the catalytic pocket. Chirality, 00:000-000, 2012.© 2012 Wiley Periodicals, Inc.
Resumo:
A Knudsen flow reactor has been used to quantify surface functional groups on aerosols collected in the field. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. In the first part of this work, the reactivity of different probe gases on laboratory-generated aerosols (limonene SOA, Pb(NO3)2, Cd(NO3)2) and diesel reference soot (SRM 2975) has been studied. Five probe gases have been selected for the quantitative determination of important functional groups: N(CH3)3 (for the titration of acidic sites), NH2OH (for carbonyl functions), CF3COOH and HCl (for basic sites of different strength), and O3 (for oxidizable groups). The second part describes a field campaign that has been undertaken in several bus depots in Switzerland, where ambient fine and ultrafine particles were collected on suitable filters and quantitatively investigated using the Knudsen flow reactor. Results point to important differences in the surface reactivity of ambient particles, depending on the sampling site and season. The particle surface appears to be multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also indicate that the surface of ambient particles was characterized by a high density of carbonyl functions (reactivity towards NH2OH probe in the range 0.26-6 formal molecular monolayers) and a low density of acidic sites (reactivity towards N(CH3)3 probe in the range 0.01-0.20 formal molecular monolayer). Kinetic parameters point to fast redox reactions (uptake coefficient ?0>10-3 for O3 probe) and slow acid-base reactions (?0<10-4 for N(CH3)3 probe) on the particle surface. [Authors]
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.
Resumo:
Kinetic parameters of T cell receptor (TCR) interactions with its ligand have been proposed to control T cell activation. Analysis of kinetic data obtained has so far produced conflicting insights; here, we offer a consideration of this problem. As a model system, association and dissociation of a soluble TCR (sT1) and its specific ligand, an azidobenzoic acid derivative of the peptide SYIPSAEK-(ABA)I (residues 252-260 from Plasmodium berghei circumsporozoite protein), bound to class I MHC H-2K(d)-encoded molecule (MHCp) were studied by surface plasmon resonance. The association time courses exhibited biphasic patterns. The fast and dominant phase was assigned to ligand association with the major fraction of TCR molecules, whereas the slow component was attributed to the presence of traces of TCR dimers. The association rate constant derived for the fast phase, assuming a reversible, single-step reaction mechanism, was relatively slow and markedly temperature-dependent, decreasing from 7.0 x 10(3) at 25 degrees C to 1.8 x 10(2) M(-1).s(-1) at 4 degrees C. Hence, it is suggested that these observed slow rate constants are the result of unresolved elementary steps of the process. Indeed, our analysis of the kinetic data shows that the time courses of TCR-MHCp interaction fit well to two different, yet closely related mechanisms, where an induced fit or a preequilibrium of two unbound TCR conformers are operational. These mechanisms may provide a rationale for the reported conformational flexibility of the TCR and its unusual ligand recognition properties, which combine high specificity with considerable crossreactivity.
Resumo:
Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. Fifty-four percent of the designed sequence replacements exhibited improved pMHC binding as compared to the native TCR, with up to 150-fold increase in affinity, while preserving specificity. Genetically engineered CD8(+) T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity, K D = ∼1 - 5 μM. Beyond the affinity threshold at K D < 1 μM we observed an attenuation in cellular function, in line with the "half-life" model of T cell activation. Our computer-aided protein-engineering approach requires the 3D-structure of the TCR-pMHC complex of interest, which can be obtained from X-ray crystallography. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes when experimental data is not available. Since the accuracy of the models depends on the prediction of the TCR orientation over pMHC, we have complemented the approach with a simplified rigid method to predict this orientation and successfully assessed it using all non-redundant TCR-pMHC crystal structures available. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of stage IV melanoma.