14 resultados para Independent Studies Programs -- History
em Université de Lausanne, Switzerland
Resumo:
CYP3A4, CYP3A5 and CYP3A7 are hepatic enzymes that metabolize about 50% of drugs on the market, with a large overlap in their specificities. We investigated the genetic bases that contribute to the variation of CYP3A activity. We phenotyped 251 individuals from two independent studies (182 patients treated with methadone and 69 patients with clozapine) for CYP3A activity using the midazolam phenotyping test and genotyped them for CYP3A4, CYP3A5, and CYP3A7 genetic variants, including the single nucleotide polymorphism (SNP) rs4646437C>T in intron 7 of CYP3A4. Owing to the fact that CYP enzymes require electron transfer through the P450 oxidoreductase (POR), and functional impairment has been shown for the POR*28 SNP, this polymorphism was also analysed. We show that CYP3A4, CYP3A5 and CYP3A7 genotypes, including the SNP rs4646437C>T, do not reflect the inter-individual variability of CYP3A activity (P>0.1). In contrast, POR*28 TT genotype presents a 1.6-fold increase in CYP3A activity compared with POR*28C carriers (n = 182, P = 0.004). This finding was replicated in the second independent dataset (n = 69, P = 0.04). The SNP POR*28 seems to be a better genetic marker of the variability of total CYP3A activity in vivo than CYP3A4, CYP3A5 and CYP3A7 genetic variants.
Resumo:
Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for ∼30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smoking.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
INTRODUCTION: Optimal identification of subtle cognitive impairment in the primary care setting requires a very brief tool combining (a) patients' subjective impairments, (b) cognitive testing, and (c) information from informants. The present study developed a new, very quick and easily administered case-finding tool combining these assessments ('BrainCheck') and tested the feasibility and validity of this instrument in two independent studies. METHODS: We developed a case-finding tool comprised of patient-directed (a) questions about memory and depression and (b) clock drawing, and (c) the informant-directed 7-item version of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). Feasibility study: 52 general practitioners rated the feasibility and acceptance of the patient-directed tool. Validation study: An independent group of 288 Memory Clinic patients (mean ± SD age = 76.6 ± 7.9, education = 12.0 ± 2.6; 53.8% female) with diagnoses of mild cognitive impairment (n = 80), probable Alzheimer's disease (n = 185), or major depression (n = 23) and 126 demographically matched, cognitively healthy volunteer participants (age = 75.2 ± 8.8, education = 12.5 ± 2.7; 40% female) partook. All patient and healthy control participants were administered the patient-directed tool, and informants of 113 patient and 70 healthy control participants completed the very short IQCODE. RESULTS: Feasibility study: General practitioners rated the patient-directed tool as highly feasible and acceptable. Validation study: A Classification and Regression Tree analysis generated an algorithm to categorize patient-directed data which resulted in a correct classification rate (CCR) of 81.2% (sensitivity = 83.0%, specificity = 79.4%). Critically, the CCR of the combined patient- and informant-directed instruments (BrainCheck) reached nearly 90% (that is 89.4%; sensitivity = 97.4%, specificity = 81.6%). CONCLUSION: A new and very brief instrument for general practitioners, 'BrainCheck', combined three sources of information deemed critical for effective case-finding (that is, patients' subject impairments, cognitive testing, informant information) and resulted in a nearly 90% CCR. Thus, it provides a very efficient and valid tool to aid general practitioners in deciding whether patients with suspected cognitive impairments should be further evaluated or not ('watchful waiting').
Resumo:
MicroRNAs are important regulators of gene expression. The vast majority of the cells in our body rely on hundreds of these tiny non-coding RNA molecules to precisely adjust their protein repertoire and faithfully accomplish their tasks. Indeed, alterations in the microRNA profile can lead to cellular dysfunction that favours the appearance of several diseases. A specific set of microRNAs plays a crucial role in pancreatic beta cell differentiation and is essential for the fine-tuning of insulin secretion and for compensatory beta cell mass expansion in response to insulin resistance. Recently, several independent studies reported alterations in microRNA levels in the islets of animal models of diabetes and in islets isolated from diabetic patients. Surprisingly, many of the changes in microRNA expression observed in animal models of diabetes were not detected in the islets of diabetic patients and vice versa. These findings are unlikely to merely reflect species differences because microRNAs are highly conserved in mammals. These puzzling results are most probably explained by fundamental differences in the experimental approaches which selectively highlight the microRNAs directly contributing to diabetes development, the microRNAs predisposing individuals to the disease or the microRNAs displaying expression changes subsequent to the development of diabetes. In this review we will highlight the suitability of the different models for addressing each of these questions and propose future strategies that should allow us to obtain a better understanding of the contribution of microRNAs to the development of diabetes mellitus in humans.
Resumo:
Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.
Resumo:
Based on neuroimaging data showing absence of the trochlear nerve, congenital superior oblique palsy is now classified as a congenital cranial dysinnervation disorder. A similar absence of the abducens nerve is accompanied by misinnervation to the lateral rectus muscle from a branch of oculomotor nerve in the Duane retraction syndrome. This similarity raises the question of whether some cases of Brown syndrome could arise from a similar synkinesis between the inferior and superior oblique muscles in the setting of congenital superior oblique palsy. This hypothesis has gained support from the confluence of evidence from a number of independent studies. Using Duane syndrome as a model, we critically review the accumulating evidence that some cases of Brown syndrome are ultimately attributable to dysgenesis of the trochlear nerve.
Resumo:
Postoperative care of major neurosurgical procedures is aimed at the prevention, detection and treatment of secondary brain injury. This consists of a series of pathological events (i.e. brain edema and intracranial hypertension, cerebral hypoxia/ischemia, brain energy dysfunction, non-convulsive seizures) that occur early after the initial insult and surgical intervention and may add further burden to primary brain injury and thus impact functional recovery. Management of secondary brain injury requires specialized neuroscience intensive care units (ICU) and continuous advanced monitoring of brain physiology. Monitoring of intracranial pressure (ICP) is a mainstay of care and is recommended by international guidelines. However, ICP monitoring alone may be insufficient to detect all episodes of secondary brain insults. Additional invasive (i.e. brain tissue PO2, cerebral microdialysis, regional cerebral blood flow) and non-invasive (i.e. transcranial doppler, near-infrared spectroscopy, EEG) brain monitoring devices might complement ICP monitoring and help clinicians to target therapeutic interventions (e.g. management of cerebral perfusion pressure, blood transfusion, glucose control) to patient-specific pathophysiology. Several independent studies demonstrate such multimodal approach may optimize patient care after major neurosurgical procedures. The aim of this review is to evaluate some of the available monitoring systems and summarize recent important data showing the clinical utility of multimodal neuromonitoring for the management of main acute neurosurgical conditions, including traumatic brain injury, subarachnoid hemorrhage and stroke.
Resumo:
The paper argues that the formulation of quantum mechanics proposed by Ghirardi, Rimini and Weber (GRW) is a serious candidate for being a fundamental physical theory and explores its ontological commitments from this perspective. In particular, we propose to conceive of spatial superpositions of non-massless microsystems as dispositions or powers, more precisely propensities, to generate spontaneous localizations. We set out five reasons for this view, namely that (1) it provides for a clear sense in which quantum systems in entangled states possess properties even in the absence of definite values; (2) it vindicates objective, single-case probabilities; (3) it yields a clear transition from quantum to classical properties; (4) it enables to draw a clear distinction between purely mathematical and physical structures, and (5) it grounds the arrow of time in the time-irreversible manifestation of the propensities to localize.
Resumo:
PURPOSE OF REVIEW: Long-lasting devices releasing steroids have been approved recently for macular edema of various origins. Identification of the retina as a novel mineralo-sensitive tissue also raises new therapeutic options. RECENT FINDINGS: Recently, the over activation of the mineralocorticoid receptor (MR) pathway has been shown to cause fluid accumulation in the retina, choroidal vasodilation, and to promote retinal neovascularization in hypoxic conditions. These findings indicate that MR antagonists could have beneficial effects in the treatment of retinal diseases. Central serous chorioretinopathy is a retinal disease associated with choroidal vasodilation and subretinal fluid that affects mostly men with type A personality and occurrence has been associated with steroid intake. In several independent studies, MR antagonists have shown beneficial effects, significantly reducing subretinal fluid in eyes of chronic central serous chorioretinopathy patients. SUMMARY: The role of MR in retinal disorder is emerging and the potential association with psychological traits is considered. The place of MR antagonists for retinal diseases treatment is discussed.