50 resultados para Inbred SHR

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2)>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mammalian circadian clockwork, the CLOCK-BMAL1 complex binds to DNA enhancers of target genes and drives circadian oscillation of transcription. Here we identified 7,978 CLOCK-binding sites in mouse liver by chromatin immunoprecipitation-sequencing (ChIP-Seq), and a newly developed bioinformatics method, motif centrality analysis of ChIP-Seq (MOCCS), revealed a genome-wide distribution of previously unappreciated noncanonical E-boxes targeted by CLOCK. In vitro promoter assays showed that CACGNG, CACGTT, and CATG(T/C)G are functional CLOCK-binding motifs. Furthermore, we extensively revealed rhythmically expressed genes by poly(A)-tailed RNA-Seq and identified 1,629 CLOCK target genes within 11,926 genes expressed in the liver. Our analysis also revealed rhythmically expressed genes that have no apparent CLOCK-binding site, indicating the importance of indirect transcriptional and posttranscriptional regulations. Indirect transcriptional regulation is represented by rhythmic expression of CLOCK-regulated transcription factors, such as Krüppel-like factors (KLFs). Indirect posttranscriptional regulation involves rhythmic microRNAs that were identified by small-RNA-Seq. Collectively, CLOCK-dependent direct transactivation through multiple E-boxes and indirect regulations polyphonically orchestrate dynamic circadian outputs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T lymphocytes reactive with the product of the Mlsa-allele of the minor lymphocyte stimulating (Mls) locus use a predominant T-cell receptor beta-chain variable gene segment (V beta 6). Such V beta 6-bearing T cells are selectively eliminated in the thymus of Mlsa-bearing mice, consistent with a model in which tolerance to self antigens is achieved by clonal deletion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenesis of Duchenne muscular dystrophy (DMD), characterised by lack of the cytoskeletal protein dystrophin, is not completely understood. An early event in the degenerative process of DMD muscle could be a rise in cytosolic calcium concentration. In order to investigate whether this leads to alterations of contractile behaviour, we studied the excitability and contractile properties of cultured myotubes from control (C57BL/10) and mdx mice, an animal model for DMD. The myotubes were stimulated electrically and their motion was recorded photometrically. No significant differences were found between control and mdx myotubes with respect to the following parameters: chronaxy and rheobase (0.33 +/- 0.03 ms and 23 +/- 4 V vs. 0.39 +/- 0.07 ms and 22 +/- 2 V for C57 and mdx myotubes, respectively), tetanisation frequency (a similar distribution pattern was found between 5 and 30 Hz), fatigue during tetanus (found in 35% of both types of myotubes) and post-tetanic contracture. In contrast, contraction and relaxation times were longer (P < 0.005) in mdx (36 +/- 2 and 142 +/- 13 ms, respectively) than in control myotubes (26 +/- 1 and 85 +/- 9 ms, respectively). Together with our earlier findings, these results suggest a decreased capacity for calcium removal in mdx cells leading, in particular, to alterations of muscle relaxation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T cell factor-1 (TCF-1) and lymphoid enhancer-binding factor 1, the effector transcription factors of the canonical Wnt pathway, are known to be critical for normal thymocyte development. However, it is largely unknown if it has a role in regulating mature T cell activation and T cell-mediated immune responses. In this study, we demonstrate that, like IL-7Ralpha and CD62L, TCF-1 and lymphoid enhancer-binding factor 1 exhibit dynamic expression changes during T cell responses, being highly expressed in naive T cells, downregulated in effector T cells, and upregulated again in memory T cells. Enforced expression of a p45 TCF-1 isoform limited the expansion of Ag-specific CD8 T cells in response to Listeria monocytogenes infection. However, when the p45 transgene was coupled with ectopic expression of stabilized beta-catenin, more Ag-specific memory CD8 T cells were generated, with enhanced ability to produce IL-2. Moreover, these memory CD8 T cells expanded to a larger number of secondary effectors and cleared bacteria faster when the immunized mice were rechallenged with virulent L. monocytogenes. Furthermore, in response to vaccinia virus or lymphocytic choriomeningitis virus infection, more Ag-specific memory CD8 T cells were generated in the presence of p45 and stabilized beta-catenin transgenes. Although activated Wnt signaling also resulted in larger numbers of Ag-specific memory CD4 T cells, their functional attributes and expansion after the secondary infection were not improved. Thus, constitutive activation of the canonical Wnt pathway favors memory CD8 T cell formation during initial immunization, resulting in enhanced immunity upon second encounter with the same pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inbreeding avoidance is predicted to induce sex biases in dispersal. But which sex should disperse? In polygynous species, females pay higher costs to inbreeding and thus might be expected to disperse more, but empirical evidence consistently reveals male biases. Here, we show that theoretical expectations change drastically if females are allowed to avoid inbreeding via kin recognition. At high inbreeding loads, females should prefer immigrants over residents, thereby boosting male dispersal. At lower inbreeding loads, by contrast, inclusive fitness benefits should induce females to prefer relatives, thereby promoting male philopatry. This result points to disruptive effects of sexual selection. The inbreeding load that females are ready to accept is surprisingly high. In absence of search costs, females should prefer related partners as long as delta<r/(1+r) where r is relatedness and delta is the fecundity loss relative to an outbred mating. This amounts to fitness losses up to one-fifth for a half-sib mating and one-third for a full-sib mating, which lie in the upper range of inbreeding depression values currently reported in natural populations. The observation of active inbreeding avoidance in a polygynous species thus suggests that inbreeding depression exceeds this threshold in the species under scrutiny or that inbred matings at least partly forfeit other mating opportunities for males. Our model also shows that female choosiness should decline rapidly with search costs, stemming from, for example, reproductive delays. Species under strong time constraints on reproduction should thus be tolerant of inbreeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE-We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes.RESEARCH DESIGN AND METHODS-Whole pancreata from untreated (n = 3), MnCl(2) and glucose-injected mice (n = 6), and mice injected with either streptozotocin (STZ; n = 4) or citrate buffer (n = 4) were imaged ex vivo for unambiguous evaluation of islets. Exteriorized pancreata of MnCl(2) and glucose-injected mice (n = 6) were imaged in vivo to directly visualize the gland and minimize movements. In all cases, MR images were acquired in a 14.1 Testa scanner and correlated with the corresponding (immuno)histological sections.RESULTS-In ex vivo experiments, MEHFMRI distinguished different pancreatic tissues and evaluated the relative abundance of islets in the pancreata of normoglycemic mice. MEHFMRI also detected a significant decrease in the numerical and volume density of islets in STZ-injected mice. However, in the latter measurements the loss of beta-cells was undervalued under the conditions tested. The experiments on the externalized pancreata confirmed that MEHFMRI could visualize native individual islets in living, anesthetized mice.CONCLUSIONS-Data show that MEHFMRI quantitatively visualizes individual islets in the intact mouse pancreas, both ex vivo and in vivo. Diabetes 60:2853-2860, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Pollen and seed dispersal in herbaceous insect-pollinated plants are often restricted, inducing strong population structure. To what extent this influences mating within and among patches is poorly understood. This study investigates the influence of population structure on pollen performance using controlled pollinations and genetic markers. METHODS: Population structure was investigated in a patchily distributed population of gynodioecious Silene vulgaris in Switzerland using polymorphic microsatellite markers. Experimental pollinations were performed on 21 hermaphrodite recipients using pollen donors at three spatial scales: (a) self-pollination; (b) within-patch cross-pollinations; and (c) between-patch cross-pollinations. Pollen performance was then compared with respect to crossing distance. KEY RESULTS: The population of S. vulgaris was characterized by a high degree of genetic sub-structure, with neighbouring plants more related to one another than to distant individuals. Inbreeding probably results from both selfing and biparental inbreeding. Pollen performance increased with distance between mates. Between-patch pollen performed significantly better than both self- and within-patch pollen donors. However, no significant difference was detected between self- and within-patch pollen donors. CONCLUSIONS: The results suggest that population structure in animal-pollinated plants is likely to influence mating patterns by favouring cross-pollinations between unrelated plants. However, the extent to which this mechanism could be effective as a pre-zygotic barrier preventing inbred mating depends on the patterns of pollinator foraging and their influence on pollen dispersal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photosensitizing properties of m-tetrahydroxyphenylchlorin (mTHPC) and polyethylene glycol-derivatized mTHPC (pegylated mTHPC) were compared in nude mice bearing human malignant mesothelioma, squamous cell carcinoma and adenocarcinoma xenografts. Laser light (20 J/cm2) at 652 nm was delivered to the tumour (surface irradiance) and to an equal-sized area of the hind leg of the animals after i.p. administration of 0.1 mg/kg body weight mTHPC and an equimolar dose of pegylated mTHPC, respectively. The extent of tumour necrosis and normal tissue injury was assessed by histology. Both mTHPC and pegylated mTHPC catalyse photosensitized necrosis in mesothelioma xenografts at drug-light intervals of 1-4 days. The onset of action of pegylated mTHPC seemed slower but significantly exceeds that of mTHPC by days 3 and 4 with the greatest difference being noted at day 4. Pegylated mTHPC also induced significantly larger photonecrosis than mTHPC in squamous cell xenografts but not in adenocarcinoma at day 4, where mTHPC showed greatest activity. The degree of necrosis induced by pegylated mTHPC was the same for all three xenografts. mTHPC led to necrosis of skin and underlying muscle at a drug-light interval of 1 day but minor histological changes only at drug-light intervals from 2-4 days. In contrast, pegylated mTHPC did not result in histologically detectable changes in normal tissues under the same treatment conditions at any drug-light interval assessed. In this study, pegylated mTHPC had advantages as a photosensitizer compared to mTHPC. Tissue concentrations of mTHPC and pegylated mTHPC were measured by high-performance liquid chromatography in non-irradiated animals 4 days after administration. There was no significant difference in tumour uptake between the two sensitizers in mesothelioma, adenocarcinoma and squamous cell carcinoma xenografts. Tissue concentration measurements were of limited use for predicting photosensitization in this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FGF-2 has been implicated in the cardiac response to hypertrophic stimuli. Angiotensin II (Ang II) contributes to maintain elevated blood pressure in hypertensive individuals and exerts direct trophic effects on cardiac cells. However, the role of FGF-2 in Ang II-induced cardiac hypertrophy has not been established. Therefore, mice deficient in FGF-2 expression were studied using a model of Ang II-dependent hypertension and cardiac hypertrophy. Echocardiographic measurements show the presence of dilated cardiomyopathy in normotensive mice lacking FGF-2. Moreover, hypertensive mice without FGF-2 developed no compensatory cardiac hypertrophy. In wild-type mice, hypertrophy was associated with a stimulation of the c-Jun N-terminal kinase, the extracellular signal regulated kinase, and the p38 kinase pathways. In contrast, mitogen-activated protein kinase (MAPK) activation was markedly attenuated in FGF-2-deficient mice. In vitro, FGF-2 of fibroblast origin was demonstrated to be essential in the paracrine stimulation of MAPK activation in cardiomyocytes. Indeed, fibroblasts lacking FGF-2 expression have a defective capacity for releasing growth factors to induce hypertrophic responses in cardiomyocytes. Therefore, these results identify the cardiac fibroblast population as a primary integrator of hypertrophic stimuli in the heart, and suggest that FGF-2 is a crucial mediator of cardiac hypertrophy via autocrine/paracrine actions on cardiac cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NKG2D is an activation receptor that allows natural killer (NK) cells to detect diseased host cells. The engagement of NKG2D with corresponding ligand results in surface modulation of the receptor and reduced function upon subsequent receptor engagement. However, it is not clear whether in addition to modulation the NKG2D receptor complex and/or its signaling capacity is preserved. We show here that the prolonged encounter with tumor cell-bound, but not soluble, ligand can completely uncouple the NKG2D receptor from the intracellular mobilization of calcium and the exertion of cell-mediated cytolysis. However, cytolytic effector function is intact since NKG2D ligand-exposed NK cells can be activated via the Ly49D receptor. While NKG2D-dependent cytotoxicity is impaired, prolonged ligand exposure results in constitutive interferon gamma (IFNgamma) production, suggesting sustained signaling. The functional changes are associated with a reduced presence of the relevant signal transducing adaptors DNAX-activating protein of 10 kDa (DAP-10) and killer cell activating receptor-associated protein/DNAX-activating protein of 12 kDa (KARAP/DAP-12). That is likely the consequence of constitutive NKG2D engagement and signaling, since NKG2D function and adaptor expression is restored to normal when the stimulating tumor cells are removed. Thus, the chronic exposure to tumor cells expressing NKG2D ligand alters NKG2D signaling and may facilitate the evasion of tumor cells from NK cell reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A murine monoclonal antibody (SJL 2-4) specific for the antigen apo-cytochrome c was shown to inhibit both antigen-induced proliferation and lymphokine secretion by an apo-cytochrome c-specific BALB/c helper T cell clone. The inhibition was specific because additional apo-cytochrome c-specific T cell clones were not inhibited by the same monoclonal antibody. Time course studies of the inhibition indicated that the initial 8 hr of contact between T cell clones and antigen-presenting cells were critical for activation of the T cell clones. Inhibition of T cell functions by antigen-specific antibodies appeared to correlate with the antibody-antigen binding constant because a second monoclonal antibody (Cyt-1-59), with identical specificity but with a lower affinity constant for apo-cytochrome c, had very little inhibitory effect on the proliferation or lymphokine secretion of apo-cytochrome c-specific T cell clones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

B and T lymphocyte attenuator (BTLA) is a negative regulator of T cell activation, but its function in vivo is not well characterized. Here we show that mice deficient in full-length BTLA or its ligand, herpesvirus entry mediator, had increased number of memory CD8(+) T cells. The memory CD8(+) T cell phenotype resulted from a T cell-intrinsic perturbation of the CD8(+) T cell pool. Naive BTLA-deficient CD8(+) T cells were more efficient than wild-type cells at generating memory in a competitive antigen-specific system. This effect was independent of the initial expansion of the responding antigen-specific T cell population. In addition, BTLA negatively regulated antigen-independent homeostatic expansion of CD4(+) and CD8(+) T cells. These results emphasize two central functions of BTLA in limiting T cell activity in vivo.