66 resultados para Greens-function Solution
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: Enteral glutamine supplementation and antioxidants have been shown to be beneficial in some categories of critically ill patients. This study investigated the impact on organ function and clinical outcome of an enteral solution enriched with glutamine and antioxidant micronutrients in patients with trauma and with burns. METHODS: This was a prospective study of a historical control group including critically ill, burned and major trauma patients (n = 86, 40 patients with burns and 46 with trauma, 43 in each group) on admission to an intensive care unit in a university hospital (matching for severity, age, and sex). The intervention aimed to deliver a 500-mL enteral solution containing 30 g of glutamine per day, selenium, zinc, and vitamin E (Gln-AOX) for a maximum of 10 d, in addition to control treatment consisting of enteral nutrition in all patients and intravenous trace elements in all burn patients. RESULTS: Patients were comparable at baseline, except for more inhalation injuries in the burn-Gln-AOX group (P = 0.10) and greater neurologic impairment in the trauma-Gln-AOX group (P = 0.022). Intestinal tolerance was good. The full 500-mL dose was rarely delivered, resulting in a low mean glutamine daily dose (22 g for burn patients and 16 g for trauma patients). In burn patients intravenous trace element delivery was superior to the enteral dose. The evolution of the Sequential Organ Failure Assessment score and other outcome variables did not differ significantly between groups. C-reactive protein decreased faster in the Gln-AOX group. CONCLUSION: The Gln-AOX supplement was well tolerated in critically ill, injured patients, but did not improve outcome significantly. The delivery of glutamine below the 0.5-g/kg recommended dose in association with high intravenous trace element substitution doses in burn patients are likely to have blunted the impact by not reaching an efficient treatment dose. Further trials testing higher doses of Gln are required.
Resumo:
The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.
Resumo:
Reduced re'nal function has been reported with tenofovir disoproxil fumarate (TDF). It is not clear whether TDF co-administered with a boosted protease inhibitor (PI) leads to a greater decline in renal function than TDF co-administered with a non-nucleoside reverse transcriptase inhibitor (NNRTI).Methods: We selected ail antiretroviral therapy-naive patients in the Swiss HIV Cohort Study (SHCS) with calibrated or corrected serum creatinine measurements starting antiretroviral therapy with TDF and either efavirenz (EFV) or the ritonavir-boosted PIs, lopinavir (LPV/r) or atazanavir (ATV/r). As a measure of renal function, we used the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation to estimate the glomerular filtration rate (eGFR). We calculated the difference in eGFR over time between two therapies using a marginal model for repeated measures. In weighted analyses, observations were weighted by the product of their point of treatment and censoring weights to adjust for differences both in the sort of patients starting each therapy and in the sort of patients remaining on each therapy over time.Results: By March 2011, 940 patients with at least one creatinine measurement on a first therapy with either TDF and EFV (n=484), TDF and LPVlr (n=269) or TDF and ATV/r (n=187) had been followed for a median of 1. 7, 1.2 and 1.3 years, respectively. Table 1 shows the difference in average estimated GFR (eGFR) over time since starting cART for two marginal models. The first model was not adjusted for potential confounders; the second mode! used weights to adjust for confounders. The results suggest a greater decline in renal function during the first 6 months if TDF is used with a PI rather than with an NNRTI, but no further difference between these therapies after the first 6 months. TDF and ATV/r may lead to a greater decline in the first 6 months than TDF and LPVlr.Conclusions: TDF co-administered with a boosted PI leads to a greater de cline in renal function over the first 6 months of therapy than TDF co-administered with an NNRTI; this decline may be worse with ATV/r than with LPV/r.
Resumo:
NKG2D is an activation receptor that allows natural killer (NK) cells to detect diseased host cells. The engagement of NKG2D with corresponding ligand results in surface modulation of the receptor and reduced function upon subsequent receptor engagement. However, it is not clear whether in addition to modulation the NKG2D receptor complex and/or its signaling capacity is preserved. We show here that the prolonged encounter with tumor cell-bound, but not soluble, ligand can completely uncouple the NKG2D receptor from the intracellular mobilization of calcium and the exertion of cell-mediated cytolysis. However, cytolytic effector function is intact since NKG2D ligand-exposed NK cells can be activated via the Ly49D receptor. While NKG2D-dependent cytotoxicity is impaired, prolonged ligand exposure results in constitutive interferon gamma (IFNgamma) production, suggesting sustained signaling. The functional changes are associated with a reduced presence of the relevant signal transducing adaptors DNAX-activating protein of 10 kDa (DAP-10) and killer cell activating receptor-associated protein/DNAX-activating protein of 12 kDa (KARAP/DAP-12). That is likely the consequence of constitutive NKG2D engagement and signaling, since NKG2D function and adaptor expression is restored to normal when the stimulating tumor cells are removed. Thus, the chronic exposure to tumor cells expressing NKG2D ligand alters NKG2D signaling and may facilitate the evasion of tumor cells from NK cell reactions.
Resumo:
A murine monoclonal antibody (SJL 2-4) specific for the antigen apo-cytochrome c was shown to inhibit both antigen-induced proliferation and lymphokine secretion by an apo-cytochrome c-specific BALB/c helper T cell clone. The inhibition was specific because additional apo-cytochrome c-specific T cell clones were not inhibited by the same monoclonal antibody. Time course studies of the inhibition indicated that the initial 8 hr of contact between T cell clones and antigen-presenting cells were critical for activation of the T cell clones. Inhibition of T cell functions by antigen-specific antibodies appeared to correlate with the antibody-antigen binding constant because a second monoclonal antibody (Cyt-1-59), with identical specificity but with a lower affinity constant for apo-cytochrome c, had very little inhibitory effect on the proliferation or lymphokine secretion of apo-cytochrome c-specific T cell clones.
Resumo:
The alpha1b-adrenergic receptor (AR) is a member of the large superfamily of seven transmembrane domain (TMD) G protein-coupled receptors (GPCR). Combining site-directed mutagenesis of the alpha1b-AR with computational simulations of receptor dynamics, we have explored the conformational changes underlying the process of receptor activation, i.e. the transition between the inactive and active states. Our findings suggest that the structural constraint stabilizing the alpha1b-AR in the inactive form is a network of H-bonding interactions amongst conserved residues forming a polar pocket and R143 of the DRY sequence at the end of TMDIII. We have recently reported that point mutations of D142, of the DRY sequence and of A293 in the distal portion of the third intracellular loop resulted in ligand-independent (constitutive) activation of the alpha1b-AR. These constitutively activating mutations could induce perturbations resulting in the shift of R143 out of the polar pocket. The main role of R143 may be to mediate receptor activation by triggering the exposure of several basic amino acids of the intracellular loops towards the G protein. Our investigation has been extended also to the biochemical events involved in the desensitization process of alpha1b-AR. Our results indicate that immediately following agonist-induced activation, the alpha1b-AR can undergo rapid agonist-induced phosphorylation and desensitization. Different members of the G protein coupled receptor kinase family can play a role in agonist-induced regulation of the alpha1b-AR. In addition, constitutively active alpha1b-AR mutants display different phosphorylation and internalization features. The future goal is to further elucidate the molecular mechanism underlying the complex equilibrium between activation and inactivation of the alpha1b-AR and its regulation by pharmacological substances. These findings can help to elucidate the mechanism of action of various agents displaying properties of agonists or inverse agonists at the adrenergic system.
Resumo:
Préface My thesis consists of three essays where I consider equilibrium asset prices and investment strategies when the market is likely to experience crashes and possibly sharp windfalls. Although each part is written as an independent and self contained article, the papers share a common behavioral approach in representing investors preferences regarding to extremal returns. Investors utility is defined over their relative performance rather than over their final wealth position, a method first proposed by Markowitz (1952b) and by Kahneman and Tversky (1979), that I extend to incorporate preferences over extremal outcomes. With the failure of the traditional expected utility models in reproducing the observed stylized features of financial markets, the Prospect theory of Kahneman and Tversky (1979) offered the first significant alternative to the expected utility paradigm by considering that people focus on gains and losses rather than on final positions. Under this setting, Barberis, Huang, and Santos (2000) and McQueen and Vorkink (2004) were able to build a representative agent optimization model which solution reproduced some of the observed risk premium and excess volatility. The research in behavioral finance is relatively new and its potential still to explore. The three essays composing my thesis propose to use and extend this setting to study investors behavior and investment strategies in a market where crashes and sharp windfalls are likely to occur. In the first paper, the preferences of a representative agent, relative to time varying positive and negative extremal thresholds are modelled and estimated. A new utility function that conciliates between expected utility maximization and tail-related performance measures is proposed. The model estimation shows that the representative agent preferences reveals a significant level of crash aversion and lottery-pursuit. Assuming a single risky asset economy the proposed specification is able to reproduce some of the distributional features exhibited by financial return series. The second part proposes and illustrates a preference-based asset allocation model taking into account investors crash aversion. Using the skewed t distribution, optimal allocations are characterized as a resulting tradeoff between the distribution four moments. The specification highlights the preference for odd moments and the aversion for even moments. Qualitatively, optimal portfolios are analyzed in terms of firm characteristics and in a setting that reflects real-time asset allocation, a systematic over-performance is obtained compared to the aggregate stock market. Finally, in my third article, dynamic option-based investment strategies are derived and illustrated for investors presenting downside loss aversion. The problem is solved in closed form when the stock market exhibits stochastic volatility and jumps. The specification of downside loss averse utility functions allows corresponding terminal wealth profiles to be expressed as options on the stochastic discount factor contingent on the loss aversion level. Therefore dynamic strategies reduce to the replicating portfolio using exchange traded and well selected options, and the risky stock.
Resumo:
Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.
Resumo:
PURPOSE: Gastric or intestinal patches, commonly used for reconstructive cystoplasty, may induce severe metabolic complications. The use of bladder tissues reconstructed in vitro could avoid these complications. We compared cellular differentiation and permeability characteristics of human native with in vitro cultured stratified urothelium. MATERIALS AND METHODS: Human stratified urothelium was induced in vitro. Morphology was studied with light and electron microscopy and expression of key cellular proteins was assessed using immunohistochemistry. Permeability coefficients were determined by measuring water, urea, ammonia and proton fluxes across the urothelium. RESULTS: As in native urothelium the stratified urothelial construct consisted of basal membrane and basal, intermediate and superficial cell layers. The apical membrane of superficial cells formed villi and glycocalices, and tight junctions and desmosomes were developed. Immunohistochemistry showed similarities and differences in the expression of cytokeratins, integrin and cellular adhesion proteins. In the cultured urothelium cytokeratin 20 and integrin subunits alpha6 and beta4 were absent, and symplekin was expressed diffusely in all layers. Uroplakins were clearly expressed in the superficial umbrella cells of the urothelial constructs, however, they were also present in intermediate and basal cells. Symplekin and uroplakins were expressed only in the superficial cells of native bladder tissue. The urothelial constructs showed excellent viability, and functionally their permeabilities for water, urea and ammonia were no different from those measured in native human urothelium. Proton permeability was even lower in the constructs compared to that of native urothelium. CONCLUSIONS: Although the in vitro cultured human stratified urothelium did not show complete terminal differentiation of its superficial cells, it retained the same barrier characteristics against the principal urine components. These results indicate that such in vitro cultured urothelium, after being grown on a compliant degradable support or in coculture with smooth muscle cells, is suitable for reconstructive cystoplasty.
Resumo:
AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.
Resumo:
OBJECTIVE: To investigate the association of renal impairment on functional outcome and complications in stroke patients treated with IV thrombolysis (IVT). METHODS: In this observational study, we compared the estimated glomerular filtration rate (GFR) with poor 3-month outcome (modified Rankin Scale scores 3-6), death, and symptomatic intracranial hemorrhage (sICH) based on the criteria of the European Cooperative Acute Stroke Study II trial. Unadjusted and adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Patients without IVT treatment served as a comparison group. RESULTS: Among 4,780 IVT-treated patients, 1,217 (25.5%) had a low GFR (<60 mL/min/1.73 m(2)). A GFR decrease by 10 mL/min/1.73 m(2) increased the risk of poor outcome (OR [95% CI]): (ORunadjusted 1.20 [1.17-1.24]; ORadjusted 1.05 [1.01-1.09]), death (ORunadjusted 1.33 [1.28-1.38]; ORadjusted 1.18 [1.11-1.249]), and sICH (ORunadjusted 1.15 [1.01-1.22]; ORadjusted 1.11 [1.04-1.20]). Low GFR was independently associated with poor 3-month outcome (ORadjusted 1.32 [1.10-1.58]), death (ORadjusted 1.73 [1.39-2.14]), and sICH (ORadjusted 1.64 [1.21-2.23]) compared with normal GFR (60-120 mL/min/1.73 m(2)). Low GFR (ORadjusted 1.64 [1.21-2.23]) and stroke severity (ORadjusted 1.05 [1.03-1.07]) independently determined sICH. Compared with patients who did not receive IVT, treatment with IVT in patients with low GFR was associated with poor outcome (ORadjusted 1.79 [1.41-2.25]), and with favorable outcome in those with normal GFR (ORadjusted 0.77 [0.63-0.94]). CONCLUSION: Renal function significantly modified outcome and complication rates in IVT-treated stroke patients. Lower GFR might be a better risk indicator for sICH than age. A decrease of GFR by 10 mL/min/1.73 m(2) seems to have a similar impact on the risk of death or sICH as a 1-point-higher NIH Stroke Scale score measuring stroke severity.
Resumo:
Quantum indeterminism is frequently invoked as a solution to the problem of how a disembodied soul might interact with the brain (as Descartes proposed), and is sometimes invoked in theories of libertarian free will even when they do not involve dualistic assumptions. Taking as example the Eccles-Beck model of interaction between self (or soul) and brain at the level of synaptic exocytosis, I here evaluate the plausibility of these approaches. I conclude that Heisenbergian uncertainty is too small to affect synaptic function, and that amplification by chaos or by other means does not provide a solution to this problem. Furthermore, even if Heisenbergian effects did modify brain functioning, the changes would be swamped by those due to thermal noise. Cells and neural circuits have powerful noise-resistance mechanisms, that are adequate protection against thermal noise and must therefore be more than sufficient to buffer against Heisenbergian effects. Other forms of quantum indeterminism must be considered, because these can be much greater than Heisenbergian uncertainty, but these have not so far been shown to play a role in the brain.
Long-term fluctuation of relative afferent pupillary defect in subjects with normal visual function.
Resumo:
PURPOSE: To determine whether the relative afferent pupillary defect (RAPD) remains constant over time in normal subjects. METHODS: Seventeen normal subjects were tested with infrared pupillography and automated perimetry in four sessions over 3 years. The changes in RAPD and visual field asymmetry between testing sessions were compared. RESULTS: The range of RAPD was 0.0 to 0.3 log unit, and the difference in the mean deviation between the eyes on automated static perimetry was 0 to 3 dB. Eight subjects repeatedly had an RAPD in the same eye. There was no correlation between the RAPD and the visual field asymmetry at the same visit. Changes in the magnitude of the RAPD between any two sessions were typically small (median, 0.08 log unit; 25th percentile, 0.04 log unit; 75th percentile, 0.15 log unit). CONCLUSIONS: Some normal subjects may show a persistent but small RAPD in the absence of detectable pathologic disease. Therefore, an isolated RAPD in the range of 0.3 log unit that is not associated with any other significant historical or clinical finding should probably be considered benign.