6 resultados para GILDARDO RESTREPO LOPEZ
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Vitamin D is an important immune modulator and preliminary data indicated an association between vitamin D deficiency and sustained virologic response (SVR) rates in patients with chronic hepatitis C. We therefore performed a comprehensive analysis on the impact of vitamin D serum levels and of genetic polymorphisms within the vitamin D cascade on chronic hepatitis C and its treatment. METHODS: Vitamin D serum levels, genetic polymorphisms within the vitamin D receptor and the 1α- hydroxylase were determined in a cohort of 468 HCV genotype 1, 2 and 3 infected patients who were treated with interferon-alfa based regimens. RESULTS: Chronic hepatitis C was associated with a high incidence of severe vitamin D deficiency compared to controls (25(OH)D3<10 ng/mL in 25% versus 12%, p<0.00001), which was in part reversible after HCV eradication. 25(OH)D3 deficiency correlated with SVR in HCV genotype 2 and 3 patients (63% and 83% SVR for patients with and without severe vitamin D deficiency, respectively, p<0.001). In addition, the CYPB27-1260 promoter polymorphism rs10877012 had substantial impact on 1-25- dihydroxyvitamin D serum levels and SVR rates in HCV genotype 1, 2 and 3 infected patients. CONCLUSIONS: Chronic hepatitis C virus infection is associated with vitamin D deficiency. Reduced 25- hydroxyvitamin D levels and CYPB27-1260 promoter polymorphism are associated with failure to achieve SVR in HCV genotype 1, 2, 3 infected patients.
Resumo:
Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 × 10(-8)) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease.
Resumo:
BACKGROUND: Invasive fungal diseases are important causes of morbidity and mortality. Clarity and uniformity in defining these infections are important factors in improving the quality of clinical studies. A standard set of definitions strengthens the consistency and reproducibility of such studies. METHODS: After the introduction of the original European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group definitions, advances in diagnostic technology and the recognition of areas in need of improvement led to a revision of this document. The revision process started with a meeting of participants in 2003, to decide on the process and to draft the proposal. This was followed by several rounds of consultation until a final draft was approved in 2005. This was made available for 6 months to allow public comment, and then the manuscript was prepared and approved. RESULTS: The revised definitions retain the original classifications of "proven," "probable," and "possible" invasive fungal disease, but the definition of "probable" has been expanded, whereas the scope of the category "possible" has been diminished. The category of proven invasive fungal disease can apply to any patient, regardless of whether the patient is immunocompromised, whereas the probable and possible categories are proposed for immunocompromised patients only. CONCLUSIONS: These revised definitions of invasive fungal disease are intended to advance clinical and epidemiological research and may serve as a useful model for defining other infections in high-risk patients.
Resumo:
Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.
Resumo:
Chronic kidney disease (CKD), impairment of kidney function, is a serious public health problem, and the assessment of genetic factors influencing kidney function has substantial clinical relevance. Here, we report a meta-analysis of genome-wide association studies for kidney function-related traits, including 71,149 east Asian individuals from 18 studies in 11 population-, hospital- or family-based cohorts, conducted as part of the Asian Genetic Epidemiology Network (AGEN). Our meta-analysis identified 17 loci newly associated with kidney function-related traits, including the concentrations of blood urea nitrogen, uric acid and serum creatinine and estimated glomerular filtration rate based on serum creatinine levels (eGFRcrea) (P < 5.0 × 10(-8)). We further examined these loci with in silico replication in individuals of European ancestry from the KidneyGen, CKDGen and GUGC consortia, including a combined total of ∼110,347 individuals. We identify pleiotropic associations among these loci with kidney function-related traits and risk of CKD. These findings provide new insights into the genetics of kidney function.
Resumo:
Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.