3 resultados para GC Oceanography
em Université de Lausanne, Switzerland
Resumo:
Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. The different gases are separated by specific columns but, if hydrogen (H2 ) is present in the sample, its detection can be performed by a thermal conductivity detector or a helium ionization detector. Indeed, coupled to GC, no other detector can perform this detection except the expensive atomic emission detector. Based on the detection and analysis of H2 isotopes by low-pressure chemical ionization mass spectrometry (MS), a new method for H2 detection by GC coupled to MS with an electron ionization ion source and a quadrupole analyser is presented. The presence of H2 in a gaseous mixture could easily be put in evidence by the monitoring of the molecular ion of the protonated carrier gas. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.
Resumo:
For more than a decade scientists tried to develop methods capable of dating ink by monitoring the loss of phenoxyethanol (PE) over time. While many methods were proposed in the literature, few were really used to solve practical cases and they still raise much concern within the scientific community. In fact, due to the complexity of ink drying processes it is particularly difficult to find a reliable ageing parameter to reproducibly follow ink ageing. Moreover, systematic experiments are required in order to evaluate how different factors actually influence the results over time. Therefore, this work aimed at evaluating the capacity of four different ageing parameters to reliably follow ink ageing over time: (1) the quantity of solvent PE in an ink line, (2) the relative peak area (RPA) normalising the PE results using stable volatile compounds present in the ink formulation, (3) the solvent loss ratio (R%) calculated from PE results obtained by the analyses of naturally and artificially aged samples, (4) a modified solvent loss ratio version (R%*) calculated from RPA results. After the determination of the limits of reliable measurements of the analytical method, the repeatability of the different ageing parameters was evaluated over time, as well as the influence of ink composition, writing pressure and storage conditions on the results. Surprisingly, our results showed that R% was not the most reliable parameter, as it showed the highest standard deviation. Discussion of the results in an ink dating perspective suggests that other proposed parameters, such as RPA values, may be more adequate to follow ink ageing over time.