41 resultados para GATE SWITCH ARRAYS
em Université de Lausanne, Switzerland
Resumo:
Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors that mediate the effects of lipidic ligands at the transcriptional level. In this review, we highlight advances in the understanding of the PPAR ligand binding domain (LBD) structure at the atomic level. The overall structure of PPARs LBD is described, and important protein ligand interactions are presented. Structure-activity relationships between isotypes structures and ligand specificity are addressed. It is shown that the numerous experimental three-dimensional structures available, together with in silico simulations, help understanding the role played by the activating function-2 (AF-2) in PPARs activation and its underlying molecular mechanism. The relation between the PPARs constitutive activity and the intrinsic stability of the active conformation is discussed. Finally, the interactions of PPARs LBD with co-activators or co-repressors, as well as with the retinoid X receptor (RXR) are described and considered in relation to PPARs activation.
Resumo:
The RP protein (RPP) array approach immobilizes minute amounts of cell lysates or tissue protein extracts as distinct microspots on NC-coated slide. Subsequent detection with specific antibodies allows multiplexed quantification of proteins and their modifications at a scale that is beyond what traditional techniques can achieve. Cellular functions are the result of the coordinated action of signaling proteins assembled in macromolecular complexes. These signaling complexes are highly dynamic structures that change their composition with time and space to adapt to cell environment. Their comprehensive analysis requires until now relatively large amounts of cells (>5 x 10(7)) due to their low abundance and breakdown during isolation procedure. In this study, we combined small scale affinity capture of the T-cell receptor (TCR) and RPP arrays to follow TCR signaling complex assembly in human ex vivo isolated CD4 T-cells. Using this strategy, we report specific recruitment of signaling components to the TCR complex upon T-cell activation in as few as 0.5 million of cells. Second- to fourth-order TCR interacting proteins were accurately quantified, making this strategy specially well-suited to the analysis of membrane-associated signaling complexes in limited amounts of cells or tissues, e.g., ex vivo isolated cells or clinical specimens.
Resumo:
Purpose: Sirolimus (SRL) has been used to replace calcineurin inhibitors (CNI) for various indications including CNI-induced toxicity. The aim of this study was to evaluate the efficacy and safety of switching from CNI to SRL in stable renal transplant recipients (RTR) with low grade proteinuria (<1 g/24 h). Methods and materials: Between 2001 and 2007, 41 patients (20 females, 21 males; mean age 47 ± 13) were switched after a median time post-transplantation of 73.5 months (range 0.2-273.2 months). Indications for switch were CNI nephrotoxicity (39%), thrombotic micro-angiopathy (14.6%), post-transplantation cancer (24.4%), CNI neurotoxicity (7.4%), or others (14.6%). Mean follow-up after SRL switch was 23.8±16.3 months. Mean SRL dosage and through levels were 2.4 ± 1.1 mg/day and 8 ± 2.2 ug/l respectively. Immunosuppressive regiments were SRL + mycophenolate mofetil (MMF) (31.7%), SRL + MMF + prednisone (36.58%), SRL + prednisone (19.51%), SRL + Azathioprine (9.75%), or SRL alone (2.43%). Results: Mean creatinine decreased from 164 to 143 μmol/l (p <0.03), mean estimated glomerular filtration rate (eGFR) increased significantly from 50.13 to 55.01 ml/minute (p <0.00001), mean systolic and diastolic blood pressure decreased from 138 to 132 mm Hg (p <0.03) and from 83 to78 mm Hg (p <0.01), but mean proteinuria increased from 0.21 to 0.63 g/24 h (p <0.001). While mean total cholesterolemia didn't increased significantly from 5.09 to 5.56 mmol/l (p = 0.06). The main complications after SRL switch were dermatitis (19.5%), urinary tract infections (24.4%), ankle edema (13.3%), and transient oral ulcers (20%). Acute rejection after the switch occurred in 7.3% of patients (n = 3), and 2 acute rejections were successfully treated with corticosteroids and 1 did not respond to treatment (not related to switch). SRL had to be discontinued in 17% of patients (2 nephrotic syndromes, 2 severe edema, 1 acute rejection, 1 thrombotic micro-angiopathy, and 1 fever). Conclusion: In conclusion, we found that switching from CNI to SRL in stable RTR was safe and associated with a significant improvement of renal function and blood pressure. Known side-effects of SRL led to drug discontinuation in less than 20% of patients and the acute rejection rate was 7.3%. This experience underlines the importance of patient selection before switching to SRL, in particular regarding preswitch proteinuria.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
Using event-related potentials (ERPs), we investigated the neural response associated with preparing to switch from one task to another. We used a cued task-switching paradigm in which the interval between the cue and the imperative stimulus was varied. The difference between response time (RT) to trials on which the task switched and trials on which the task repeated (switch cost) decreased as the interval between cue and target (CTI) was increased, demonstrating that subjects used the CTI to prepare for the forthcoming task. However, the RT on repeated-task trials in blocks during which the task could switch (mixed-task blocks) were never as short as RTs during single-task blocks (mixing cost). This replicates previous research. The ERPs in response to the cue were compared across three conditions: single-task trials, switch trials, and repeat trials. ERP topographic differences were found between single-task trials and mixed-task (switch and repeat) trials at approximately 160 and approximately 310 msec after the cue, indicative of changes in the underlying neural generator configuration as a basis for the mixing cost. In contrast, there were no topographic differences evident between switch and repeat trials during the CTI. Rather, the response of statistically indistinguishable generator configurations was stronger at approximately 310 msec on switch than on repeat trials. By separating differences in ERP topography from differences in response strength, these results suggest that a reappraisal of previous research is appropriate.
Resumo:
Adoption is frequent in colonial animals where opportunities for dependent young to receive care from nonbiological parents are high. The departure of dependent young from their original family to seek adoption in neighbouring families is thought to be induced by sibling competition for access to limited resources provided by poor-quality parents. We tested this hypothesis in the colonial Alpine swift by manipulating the number of young reared per brood, with the prediction that offspring from enlarged broods switch nests more frequently than those from reduced broods. Although nestling swifts hatch with little locomotor activity, from 20 days until their first flight at 50-70 days they frequently move out of their nests to seek adoption in neighbouring families. Although nestlings reared in experimentally enlarged broods were lighter and their body mass at day 20 after hatching was more variable than in nestlings reared in reduced broods, there was no difference between the two treatments in the frequency of nests switching and in the age when nestlings switched nests for the first time. However, consistent with other evidence that nest switching by nestling swifts evolved as a strategy to reduce ectoparasite load, young from broods with naturally high numbers of the ectoparasitic louse fly Crataerina melbae were more prone to switch nests. This shows that ectoparasitism rather than sibling competition is a key proximate factor promoting the evolution of nest switching in the colonial Alpine swift. (c) 2006 The Association for the Study of Animal Behaviour Published by Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: In late-diagnosed transposition of the great arteries (TGA), the left ventricle (LV) involutes as it pumps against low resistance and needs retraining by applying a pulmonary artery band (PAB) in preparation for an arterial switch operation. We report our experience with a telemetrically adaptable band compared with classic banding. METHODS: Ten patients underwent retraining of the LV, 4 patients with an adaptable band and progressive weekly tightening of the band (group 1) and 6 patients with a traditional band (group 2). RESULTS: Mean weight and age at pulmonary band placement was 5.8 ± 2.36 kg and 11.7 ± 11.1 months for group 1 and 5.0 ± 2.3 kg and 6.4 ± 7.6 months for group 2. Time between palliation and switch procedure was 4.2 months in both groups. Group 1 showed an initial mean pulmonary gradient of 25.5 ± 4.43 mm Hg with a 5% closure of the device. The mean gradient increased with progressive closure to 63.5 ± 9.8 mm Hg at the time of the arterial switch operation. There were no reinterventions or deaths in this group. In group 2, the mean pulmonary gradient increased with growth from 49 ± 21.4 mm Hg to 68.4 ± 7.86 mm Hg at the time of the switch procedure. However, 4 of these patients required reoperations during retraining: 2 needed 1 reoperation and 2 needed 2 reoperations. Two patients died-1 after banding and 1 after the switch operation. CONCLUSIONS: Retraining of the LV by the adaptable device allows precise control of the tightening, avoids repetitive operations, and diminishes morbidity.
Resumo:
In mammalian cells, proper gene regulation is achieved by the complex interplay of transcription factors that activate or repress gene expression by binding to the regulatory regions of target promoters. While transcriptional activators have been extensively characterised and classified into functional groups, relatively little is known about the comparative strength and cell type-specificity of transcriptional repressors. Here, we have compared the ability of a series of eukaryotic repression domains to silence basal and activated transcription. A series of the most potent repression domains was further tested in the context of a gene therapy gene-switch system in various cell types. The results indicate that the analysed repression domains exert varying silencing activities in different promoter contexts. Furthermore, their potential for gene silencing varies also depending on the cellular context. When multimerised within one chimeric repressor protein, particular combinations of repressor domains were found to display synergistic repressing effects and efficient repression in a panel of cell lines. This approach thus allowed the identification of transcriptional repressors that are both potent and versatile in terms of cellular specificity as a basis for gene switch systems.
Resumo:
Hailey-Hailey disease (HHD) is an autosomal dominant disorder characterized by suprabasal cutaneous cell separation (acantholysis) leading to the development of erosive and oozing skin lesion. Micro RNAs (miRNAs) are endogenous post-transcriptional modulators of gene expression with critical functions in health and disease. Here, we evaluated whether the expression of specific miRNAs may play a role in the pathogenesis of HHD. Here, we report that miRNAs are expressed in a non-random manner in Hailey-Hailey patients. miR-125b appeared a promising candidate for playing a role in HHD manifestation. Both Notch1 and p63 are part of a regulatory signalling whose function is essential for the control of keratinocyte proliferation and differentiation and of note, the expression of both Notch1 and p63 is downregulated in HHD-derived keratinocytes. We found that both Notch1 and p63 expression is strongly suppressed by miR-125b expression. Additionally, we found that miR-125b expression is increased by an oxidative stress-dependent mechanism. Our data suggest that oxidative stress-mediated induction of miR-125b plays a specific role in the pathogenesis of HHD by regulating the expression of factors playing an important role in keratinocyte proliferation and differentiation.
Resumo:
Efficient priming of adaptive immunity depends on danger signals provided by innate immune pathways. As an example, inflammasome-mediated activation of caspase-1 and IL-1beta is crucial for the development of reactive T cells targeting sensitizers like dinitrofluorobenzene (DNFB). Surprisingly, DNFB and dinitrothiocyanobenzene provide cross-reactive Ags yet drive opposing, sensitizing vs tolerizing, T cell responses. In this study, we show that, in mice, inflammasome-signaling levels can be modulated to turn dinitrothiocyanobenzene into a sensitizer and DNFB into a tolerizer, and that it correlates with the IL-6 and IL-12 secretion levels, affecting Th1, Th17, and regulatory T cell development. Hence, our data provide the first evidence that the inflammasome can define the type of adaptive immune response elicited by an Ag, and hint at new strategies to modulate T cell responses in vivo.
Resumo:
Studies on designed peptides that exhibit high tendencies for medium-induced conformational transitions have recently attracted much attention because structural changes are considered as molecular key processes in degenerative diseases. The experimental access to these events has been limited so far mainly due to the intrinsic tendency of the involved polypeptides for self-association and aggregation, e.g. amyloid P plaque formation, thought to be at the origin of Alzheimer's disease. We have developed a new concept termed 'switch-peptides' which allows the controlled onset of polypeptide folding and misfolding in vitro and in vivo, starting from a soluble, non-toxic precursor molecule. As a major feature, the folding process is initiated by enzyme-triggered N,O-acyl migrations restoring the native peptide backbone in situ. As the folding is set off in the moment of creating the bioactive molecule ('in statu nascendi', ISN), our concept allows for the first time the investigation of the early steps of protein misfolding as relevant in degenerative diseases, opening new perspectives for the rational design of therapeutically relevant compounds.
Resumo:
The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.
Resumo:
ABSTRACT: Identification of small polymorphisms from next generation sequencing short read data is relatively easy, but detection of larger deletions is less straightforward. Here, we analyzed four divergent Arabidopsis accessions and found that intersection of absent short read coverage with weak tiling array hybridization signal reliably flags deletions. Interestingly, individual deletions were frequently observed in two or more of the accessions examined, suggesting that variation in gene content partly reflects a common history of deletion events.