125 resultados para Fetal renal regulation

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since nitric oxide (NO) participates in the renal regulation of blood pressure, in part, by modulating transport of Na(+) and Cl(-) in the kidney, we asked whether NO regulates net Cl(-) flux (JCl) in the cortical collecting duct (CCD) and determined the transporter(s) that mediate NO-sensitive Cl(-) absorption. Cl(-) absorption was measured in CCDs perfused in vitro that were taken from aldosterone-treated mice. Administration of an NO donor (10 μM MAHMA NONOate) reduced JCl and transepithelial voltage (VT) both in the presence or absence of angiotensin II. However, reducing endogenous NO production by inhibiting NO synthase (100 μM N(G)-nitro-l-arginine methyl ester) increased JCl only in the presence of angiotensin II, suggesting that angiotensin II stimulates NO synthase activity. To determine the transport process that mediates NO-sensitive changes in JCl, we examined the effect of NO on JCl following either genetic ablation or chemical inhibition of transporters in the CCD. Since the application of hydrochlorothiazide (100 μM) or bafilomycin (5 nM) to the perfusate or ablation of the gene encoding pendrin did not alter NO-sensitive JCl, NO modulates JCl independent of the Na(+)-dependent Cl(-)/HCO3(-) exchanger (NDCBE, Slc4a8), the A cell apical plasma membrane H(+)-ATPase and pendrin. In contrast, both total and NO-sensitive JCl and VT were abolished with application of an epithelial Na(+) channel (ENaC) inhibitor (3 μM benzamil) to the perfusate. We conclude that NO reduces Cl(-) absorption in the CCD through a mechanism that is ENaC-dependent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Urinary excretion of water and all major electrolytes exhibit robust circadian oscillations. The 24-h periodicity has been well documented for several important determinants of urine formation, including renal blood flow, glomerular filtration, tubular reabsorption, and tubular secretion. Disturbance of the renal circadian rhythms is increasingly recognized as a risk factor for hypertension, polyuria, and other diseases and may contribute to renal fibrosis. The origin of these rhythms has been attributed to the reactive response of the kidney to circadian changes in volume and/or in the composition of extracellular fluids that are entrained by rest/activity and feeding/fasting cycles. However, numerous studies have shown that most of the renal excretory rhythms persist for long periods of time, even in the absence of periodic environmental cues. These observations led to the hypothesis of the existence of a self-sustained mechanism, enabling the kidney to anticipate various predictable circadian challenges to homeostasis. The molecular basis of this mechanism remained unknown until the recent discovery of the mammalian circadian clock made of a system of autoregulatory transcriptional/translational feedback loops, which have been found in all tissues studied, including the kidney. Here, we present a review of the growing evidence showing the involvement of the molecular clock in the generation of renal excretory rhythms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tubulointerstitial inflammation is a common feature of renal diseases. We have investigated the relationship between inflammation and Na(+) transport in the collecting duct (CD) using the mCCD(cl1) and mpkCDD(cl4) principal cell models. Lipopolysaccharide (LPS) decreased basal and aldosterone-stimulated amiloride-sensitive transepithelial current in a time-dependent manner. This effect was associated with a decrease in serum and glucocorticoid-regulated kinase 1 (SGK1) mRNA and protein levels followed by a decrease in epithelial sodium channel (ENaC) alpha-subunit mRNA levels. The LPS-induced decrease in SGK1 expression was confirmed in isolated rat CD. This decreased expression of either SGK1 or the ENaC alpha-subunit was not due to enhanced degradation of mRNA. In contrast, LPS inhibited transcriptional activity of the SGK1 promoter measured by luciferase-reporter gene assay. The effect of LPS was not mediated by inhibition of mineralocorticoid or glucocorticoid receptor, because expression of both receptors was unchanged and blockade of either receptor by spironolactone or RU486, respectively, did not prevent the down-regulation of SGK1. The effect of LPS was mediated by the canonical NF-kappaB pathway, as overexpression of a constitutively active mutant, IKKbeta (inhibitor of nuclear factor kappaB kinase-beta) decreased SGK1 mRNA levels, and knockdown of p65 NF-kappaB subunit by small interfering RNA increased SGK1 mRNA levels. Chromatin immunoprecipitation showed that LPS increased p65 binding to two NF-kappaB sites along the SGK1 promoter. In conclusion, we show that activation of the NF-kappaB pathway down-regulates SGK1 expression, which might lead to decreased ENaC alpha-subunit expression, ultimately resulting in decreased Na(+) transport.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kidneys are the main regulator of salt homeostasis and blood pressure. In the distal region of the tubule active Na-transport is finely tuned. This transport is regulated by various hormonal pathways including aldosterone that regulates the reabsorption at the level of the ASDN, comprising the late DCT, the CNT and the CCD. In the ASDN, the amiloride-sensitive epithelial Na-channel (ENaC) plays a major role in Na-homeostasis, as evidenced by gain-of function mutations in the genes encoding ENaC, causing Liddle's syndrome, a severe form of salt-sensitive hypertension. In this disease, regulation of ENaC is compromised due to mutations that delete or mutate a PY-motif in ENaC. Such mutations interfere with Nedd4-2- dependent ubiquitylation of ENaC, leading to reduced endocytosis of the channel, and consequently to increased channel activity at the cell surface. After endocytosis ENaC is targeted to the lysosome and rapidly degraded. Similarly to other ubiquitylated and endocytosed plasma membrane proteins (such as the EGFR), it is likely that the multi-protein complex system ESCRT is involved. To investigate the involvement of this system we tested the role of one of the ESCRT proteins, Tsg101. Here we show that Tsg101 interacts endogenously and in transfected HEK-293 cells with all three ENaC sub-units. Furthermore, mutations of cytoplasmic lysines of ENaC subunits lead to the disruption of this interaction, indicating a potential involvement of ubiquitin in Tsg101 / ENaC interaction. Tsg101 knockdown in renal epithelial cells increases the total and cell surface pool of ENaC, thus implying TsglOl and consequently the ESCRT system in ENaC degradation by the endosomal/lysosomal system. - Les reins sont les principaux organes responsables de la régulation de la pression artérielle ainsi que de la balance saline du corps. Dans la région distale du tubule, le transport actif de sodium est finement régulé. Ce transport est contrôlé par plusieurs hormones comme l'aldostérone, qui régule la réabsorption au niveau de l'ASDN, segment comprenant la fin du DCT, le CNT et le CCD. Dans l'ASDN, le canal à sodium épithélial sensible à l'amiloride (ENaC) joue un rôle majeur dans l'homéostasie sodique, comme cela fut démontré par les mutations « gain de fonction » dans les gênes encodant ENaC, causant ainsi le syndrome de Liddle, une forme sévère d'hypertension sensible au sel. Dans cette maladie, la régulation d'ENaC est compromise du fait des mutations qui supprime ou mute le domaine PY présent sur les sous-unités d'ENaC. Ces mutations préviennent l'ubiquitylation d'ENaC par Nedd4-2, conduisant ainsi à une baisse de l'endocytose du canal et par conséquent une activité accrue d'ENaC à la surface membranaire. Après endocytose, ENaC est envoyé vers le lysosome et rapidement dégradé. Comme d'autres protéines membranaires ubiquitylées et endocytées (comme l'EGFR), il est probable que le complexe multi-protéique ESCRT est impliqué dans le transport d'ENaC au lysosome. Pour étudier l'implication du système d'ESCRT dans la régulation d'ENaC nous avons testé le rôle d'une protéine de ces complexes, TsglOl. Notre étude nous a permis de démontrer que TsglOl se lie aux trois sous-unités ENaC aussi bien en co-transfection dans des cellules HEK-293 que de manière endogène. De plus, nous avons pu démontrer l'importance de l'ubiquitine dans cette interaction par la mutation de toutes les lysines placées du côté cytoplasmique des sous-unités d'ENaC, empêchant ainsi l'ubiquitylation de ces sous-unités. Enfin, le « knockdown » de TsglOl dans des cellules épithéliales de rein induit une augmentation de l'expression d'ENaC aussi bien dans le «pool» total qu'à la surface membranaire, indiquant ainsi un rôle pour TsglOl et par conséquent du système d'ESCRT dans la dégradation d'ENaC par la voie endosome / lysosome. - Le corps humain est composé d'organes chacun spécialisé dans une fonction précise. Chaque organe est composé de cellules, qui assurent la fonction de l'organe en question. Ces cellules se caractérisent par : - une membrane qui leur permet d'isoler leur compartiment interne (milieu intracellulaire ou cytoplasme) du liquide externe (milieu extracellulaire), - un noyau, où l'ADN est situé, - des protéines, sortent d'unités fonctionnelles ayant une fonction bien définie dans la cellule. La séparation entre l'extérieure et l'intérieure de la cellule est essentielle pour le maintien des composants de ces milieux ainsi que pour la bonne fonction de l'organisme et des cellules. Parmi ces composants, le sodium joue un rôle essentiel car il conditionne le maintien de volume sanguin en participant au maintien du volume extracellulaire. Une augmentation du sodium dans l'organisme provoque donc une augmentation du volume sanguin et ainsi provoque une hypertension. De ce fait, le contrôle de la quantité de sodium présente dans l'organisme est essentiel pour le bon fonctionnement de l'organisme. Le sodium est apporté par l'alimentation, et c'est au niveau du rein que va s'effectuer le contrôle de la quantité de sodium qui va être retenue dans l'organisme pour le maintien d'une concentration normale de sodium dans le milieu extracellulaire. Le rein va se charger de réabsorber toutes sortes de solutés nécessaires pour l'organisme avant d'évacuer les déchets ou le surplus de ces solutés en produisant l'urine. Le rein va se charger de réabsorber le sodium grâce à différentes protéines, parmi elle, nous nous sommes intéressés à une protéine appelée ENaC. Cette protéine joue un rôle important dans la réabsorption du sodium, et lorsqu'elle fonctionne mal, comme il a pu être observé dans certaines maladies génétiques, il en résulte des problèmes d'hypo- ou d'hypertension. Les problèmes résultant du mauvais fonctionnement de cette protéine obligent donc la cellule à réguler efficacement ENaC par différents mécanismes, notamment en diminuant son expression et en dégradant le « surplus ». Dans cette travail de thèse, nous nous sommes intéressés au mécanisme impliqué dans la dégradation d'ENaC et plus précisément à un ensemble de protéines, appelé ESCRT, qui va se charger « d'escorter » une protéine vers un sous compartiment à l'intérieur de la cellule ou elle sera dégradée.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Five functional mammalian facilitated hexose carriers (GLUTs) have been characterized by molecular cloning. By functional expression in heterologous systems, their specificity and affinity for different hexoses have been defined. There are three high-affinity transporters (GLUT-1, GLUT-3 and GLUT-4) and one low-affinity transporter (GLUT-2), and GLUT-5 is primarily a fructose carrier. Because their Michaelis constants (Km) are below the normal blood glucose concentration, the high-affinity transporters function at rates close to maximal velocity. Thus their level of cell surface expression greatly influences the rate of glucose uptake into the cells. In contrast, the rate of glucose uptake by GLUT-2 (Km = 17 mM) increases in parallel with the rise in blood glucose over the physiological concentration range. High-affinity transporters are found in almost every tissue, but their expression is higher in cells with high glycolytic activity. Glut-2, however, is found in tissues carrying large glucose fluxes, such as intestine, kidney, and liver. As an adaptive response to variations in metabolic conditions, the expression of these transporters is regulated by glucose and different hormones. Thus, because of their specific characteristics and regulated expression, the facilitated glucose transporters control fundamental aspects of glucose homeostasis. I review data pertaining to the structure and regulated expression of the glucose carriers present in intestine, kidney, and liver and discuss their role in the control of glucose flux into or out of these different tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the last decade, extensive research has been performed in the field of orthopedic medicine to develop cell-based therapies for the restoration of injured bone tissue. We previously demonstrated that human primary fetal bone cells (HFBCs) associated with porous scaffolds induced a bone formation in critical calvaria defect; however, the environmental factors regulating their behavior in culture have not been identified. HFBCs (human fetal femur,12 week development) were compared to marrow-derived human mesenchymal stem cells (HMSCs) for their capacity to proliferate and differentiate into osteoblasts under various culture conditions. When cultured in standard alphaMEM medium, PDGF and FGF-2 increased cell proliferation of both cell types. Investigation of the differentiating capacity of HFBCs and HMSCs in a normal culture medium indicated that HFBCs expressed higher expression levels of RUNX2, OSX, and osteogenic markers compared with HMSCs, while SOX9 was expressed at very low levels in both cells types. However, HMSCs, but not HFBCs enhanced osteoblastic markers in response to osteogenic factors. Surprisingly, BMP-2 with osteogenic factors increased cell numbers and reduced osteoblastic differentiation in HFBCs with the opposite effect seen in HMSCs. Associated with a higher expression of osteoblastic markers, HFBCs produced a higher calcified extra cellular matrix compared with HMSCs. Taken together, data presented in this study suggest that HFBCs have characteristics of osteoprecursor cells that are more advanced in their osteogenesis development compared with mesenchymal stem cells, making fetal cells an interesting biological tool for treatment of skeletal defects and diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study was performed to evaluate the prevalence of prenatal ultrasound diagnoses for renal anomalies in 20 registries of 12 European countries, and to compare the different prenatal scanning policies. Standardized data were acquired from 709,030 livebirths, stillbirths, and induced abortions during the study period of 2.5 years and transmitted for central analysis. At least one renal malformation was diagnosed in 1130 infants and fetuses. Prenatal diagnosis (PD) was given in 81.8% of all cases, 29% of these pregnancies were terminated. The highest detection rate was reported for unilateral multicystic dysplastic kidneys with 97% (102/105). An early diagnosis was documented for exstrophy of bladder at a mean gestational age of 18.5 weeks. Dilatations of the upper urinary tract were seen late in pregnancy at 28.3 weeks. Terminations of pregnancies (TOP) were performed in 67% (58/86) of the detected bilateral renal agenesis/dysgenesis, but only 4% of the unilateral multicystic dysplastic renal malformations (4/102). In about 1/3 of the cases, renal malformations are within the category of associated malformations, which include multiple non-syndromal malformations, chromosomal aberrations, and non-chromosomal syndromes. Renal malformations were detected in 2/3 of the associated category by the first prenatal ultrasound scan. Detection rates vary in the different countries of the European community due to diverse policies, ethical, and religious background. Countries with no routine ultrasound show the lowest rates in detection, and termination of pregnancy. Prenatally detected renal malformations should result in a careful examination for further anomalies. Prenatal ultrasound fulfills the needs of screening examinations and is a good tool in detecting lethal and severe renal malformations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Previous studies have shown that a variety of specific renal functions exhibit circadian oscillations. This review aims to provide an update on the molecular mechanisms underlying circadian rhythms in the kidney, and to discuss how dysregulation of circadian rhythms can interfere with kidney function. RECENT FINDINGS: The molecular mechanism responsible for generating and maintaining circadian rhythms has been unraveled in great detail. This mechanism, known as the circadian clock, drives circadian oscillation in expression levels of a large number of renal mRNA transcripts. Several proteins critically involved in renal homeostatic functions have been shown to exhibit significant circadian oscillation in their expression levels or in their posttranslational modifications. In transgenic mouse models, disruption of circadian clock activity results in dramatic changes in the circadian pattern of urinary sodium and potassium excretion and causes significant changes in arterial blood pressure. A growing amount of evidence suggests that dysregulation of circadian rhythms is associated with the development of hypertension and accelerated progression of chronic kidney disease and cardiovascular disease in humans. Chronotherapy studies have shown that the efficacy of antihypertensive medication is greatly dependent on the circadian time of drug administration. SUMMARY: Recent research points to the major role of circadian rhythms in renal function and in control of blood pressure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hyperammonemia in the brain leads to poorly understood alterations of nitric oxide (NO) synthesis. Arginine, the substrate of nitric oxide synthases, might be recycled from the citrulline produced with NO by argininosuccinate synthetase (AS) and argininosuccinate lyase (AL). The regulation of AS and AL genes during hyperammonemia is unknown in the brain. We used brain cell aggregates cultured from dissociated telencephalic cortex of rat embryos to analyze the regulation of AS and AL genes in hyperammonemia. Using RNase protection assay and non-radioactive in situ hybridization on aggregate cryosections, we show that both AS and AL genes are induced in astrocytes but not in neurons of aggregates exposed to 5 mM NH4Cl. Our work suggests that the hyperammonemic brain might increase its recycling of citrulline to arginine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammation significantly contributes to the progression of chronic kidney disease (CKD). Inflammasome-dependent cytokines, such as IL-1β and IL-18, play a role in CKD, but their regulation during renal injury is unknown. Here, we analyzed the processing of caspase-1, IL-1β, and IL-18 after unilateral ureteral obstruction (UUO) in mice, which suggested activation of the Nlrp3 inflammasome during renal injury. Compared with wild-type mice, Nlrp3(-/-) mice had less tubular injury, inflammation, and fibrosis after UUO, associated with a reduction in caspase-1 activation and maturation of IL-1β and IL-18; these data confirm that the Nlrp3 inflammasome upregulates these cytokines in the kidney during injury. Bone marrow chimeras revealed that Nlrp3 mediates the injurious/inflammatory processes in both hematopoietic and nonhematopoietic cellular compartments. In tissue from human renal biopsies, a wide variety of nondiabetic kidney diseases exhibited increased expression of NLRP3 mRNA, which correlated with renal function. Taken together, these results strongly support a role for NLRP3 in renal injury and identify the inflammasome as a possible therapeutic target in the treatment of patients with progressive CKD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent data indicate that bradykinin participates in the regulation of neonatal glomerular function and also acts as a growth regulator during renal development. The aim of the present study was to investigate the involvement of bradykinin in the maturation of renal function. Bradykinin beta2-receptors of newborn rabbits were inhibited for 4 days by Hoe 140. The animals were treated with 300 microg/kg s.c. Hoe 140 (group Hoe, n = 8) or 0.9% NaCl (group control, n = 8) twice daily. Clearance studies were performed in anesthetized rabbits at the age of 8-9 days. Bradykinin receptor blockade did not impair kidney growth, as demonstrated by similar kidney weights in the two groups, nor did it influence blood pressure. Renal blood flow was higher, while renal vascular resistance and filtration fraction were lower in Hoe 140-treated rabbits. No difference in glomerular filtration rate was observed. The unexpectedly higher renal perfusion observed in group Hoe cannot be explained by the blockade of the known vasodilator and trophic effect of bradykinin. Our results indicate that in intact kallikrein-kinin system is necessary for the normal functional development of the kidney.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RÉSUMÉ Après implantation dans l'utérus, le foetus de mammifère est composé de trois populations différentes de cellules: l'epiblast, l'ectoderme extraembryonnaire et l'endoderme viscéral. Pendant la gastrulation, les cellules de l'epiblast donnent naissance aux trois lignées germinales: l'ectoderme, le mésoderme et l'endodermes. Les lignées germinales produisent par la suite les différents tissus et organes du corps embryonnaire et adulte. Les cellules de l'ectoderme extraembryonnaire donnent par la suite le composant foetal du placenta qui est essentiel à la survie de l'embryon dans l'utérus. L'épiblast et l'ectoderme extraembryonnaire sont entourés par l'endoderme viscéral et forment une structure connue sous le nom de bouton embryonnaire. L'endoderme viscéral joue un rôle important dans l'embryogenèse car il comporte une sous-population de cellules appelées l'endoderme viscéral antérieur dont les signaux influencent l'épiblast adjacent et déterminent le futur axe antéro-postérieur de l'embryon. La protéine de signalisation Nodal de la famille des TGFß est essentielle dans l'épiblast pour spécifier le mésendoderme, l'endoderme viscéral antérieur, ainsi que pour maintenir les cellules souche de l'ectoderme extraembryonnaire. Ainsi, dans les embryons mutants pour Nodal, aucun axe antéro-postérieur n'est établi, les lignées germinales ne sont pas spécifiés et le placenta ne se développe pas. Au niveau moléculaire, comme pour les protéines de la famille des TGFß, Nodal est initialement synthétisée sous forme de précurseur avant d'être clivée de façon endoproteolytique par des protéanes sécrétées, les proprotéines convertases du type subtilisin (SPC), qui suppriment la partie inhibitrice N-terminale du pro peptide. Dans ce contexte, le projet de ma thèse a été d'analyser l'influence des SPC sur la fonction de Nodal en employant une combinaison d'approches génétiques et biochimiques. Premièrement, nous avons constaté que le clivage du précurseur par les protéases active Nodal, mais en même temps augmente son turn-over et diminue la portée de son action. Deuxièmement, dans l'embryon, il apparaît que Nodal est activé par l'action combinée de Furin et de PACE4, deux protéases sécrétées qui sont spécifiquement exprimées dans les cellules de l'ectoderme extraembryonnaire, donc adjacentes au domaine d'expression de Nodal. De manière similaire aux mutants de Nodal, les embryons mutants pour les deux protéases ne forment pas d'endoderme viscéral antérieur et ne gastrulent pas. Cependant, certains gènes cible de Nodal restent exprimés, suggérant que toutes les activités de Nodal ne sont pas dépendent du clivage par les SPCs. En effet, la génération et l'analyse de mutants portant un allèle knock-in qui code pour une forme mutante de Nodal résistante aux SPC, ont montré que ces mutants ont les caractères phénotypique des mutants de Nodal seulement de façon partielle. La formation de mésoderme est partiellement induite, et de façon remarquable, la forme de Nodal résistante aux SPC est capable d'agir à une distance de sa source, maintenant l'expression de ses propres protéases et d'autres gènes essentiels pour la spécification de l'ectoderme extraembryonnaire. Ensemble, ces résultats prouvent que par leur action directe les protéases extraembryonnaire modulent la signalisation de Nodal pendant le développement mammifère précoce. SUMMARY : Early after implantation in the uterus, the mammalian conceptus is composed of three different cell populations: the epiblast, the extraembryonic ectoderm and the visceral endoderm. During gastrulation, epiblast cells give rise to the three embryonic germ layers: the ectoderm, the mesoderm and the endoderm. These germ layers then generate the different tissues and organs of the embryonic and adult bodies. In parallel, extraembryonic ectoderm cells give rise to the fetal component of the placenta, which is essential for the survival of the embryo in the uterus. Both the epiblast and extraembryonic ectoderm are surrounded by the visceral endoderm to form a structure known as the egg cylinder. The visceral endoderm plays an important role as it harbours a subpopulation of cells called the anterior visceral endoderm, from which signals influence the adjacent epiblast and determine the future antero-posterior embryonic axis. The TGFß-related signalling protein Nodal is required within the epiblast to specify the mesoderm, the endoderm,the anterior visceral endoderm and is also essential to maintain stem cells in the extraembryonic ectoderm. Thus, in Nodal null conceptuses, no antero-posterior axis is established, the germ layers are not specified and the placenta does not develop. At the molecular level, Nodal, like related proteins of the TGFß family, is initially synthesized as a precursor and undergoes endoproteolytic cleavage by secreted proteases of the subtilisin-like proprotein convertases (SPC) to remove an inhibitory N-terminal pro peptide. In the embryo, Nodal is activated by the combined action of Furin and PACE4, two secreted SPCs that are specifically expressed in cells of the extraembryonic ectoderm, thus adjacent to the Nodal expression domain. Similar to Nodal null .embryos, mutant embryos lacking both these proteases fail to specify the anterior visceral endoderm and to undergo gastrulation. However, these mutants still express a subset of Nodal target genes, suggesting that part of Nodal activity is independent on cleavage by SPCs. Indeed, by generating and analyzing mutants with a knock-in allele that encodes an SPC-resistant mutant form of Nodal, I could show that they retain a subset of Nodal activities. Mesoderm formation is partially induced, but most remarkably, SPC-resistant Nodal form is able to act at a distance from its source, maintaining the expression of its proteases and of other genes essential for maintenance of the extraembryonic ectoderm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic defects in autosomal-dominant polycystic kidney disease (ADPKD) promote cystic growth of renal tubules, at least in part by stimulating the accumulation of cAMP. How renal cAMP levels are regulated is incompletely understood. We show that cAMP and the expression of its synthetic enzyme adenylate cyclase-6 (AC6) are up-regulated in cystic kidneys of Bicc1(-)(/-) knockout mice. Bicc1, a protein comprising three K homology (KH) domains and a sterile alpha motif (SAM), is expressed in proximal tubules. The KH domains independently bind AC6 mRNA and recruit the miR-125a from Dicer, whereas the SAM domain enables silencing by Argonaute and TNRC6A/GW182. Bicc1 similarly induces silencing of the protein kinase inhibitor PKIα by miR-27a. Thus, Bicc1 is needed on these target mRNAs for silencing by specific miRNAs. The repression of AC6 by Bicc1 might explain why cysts in ADPKD patients preferentially arise from distal tubules.