3 resultados para FADING
em Université de Lausanne, Switzerland
Resumo:
Many models of (un)ethical decision making assume that people decide rationally and are in principle able to evaluate their decisions from a moral point of view. However, people might behave unethically without being aware of it. They are ethically blind. Adopting a sensemaking approach, we argue that ethical blindness results from a complex interplay between individual sensemaking activities and context factors.
Resumo:
Myocardial tagging has shown to be a useful magnetic resonance modality for the assessment and quantification of local myocardial function. Many myocardial tagging techniques suffer from a rapid fading of the tags, restricting their application mainly to systolic phases of the cardiac cycle. However, left ventricular diastolic dysfunction has been increasingly appreciated as a major cause of heart failure. Subtraction based slice-following CSPAMM myocardial tagging has shown to overcome limitations such as fading of the tags. Remaining impediments to this technique, however, are extensive scanning times (approximately 10 min), the requirement of repeated breath-holds using a coached breathing pattern, and the enhanced sensitivity to artifacts related to poor patient compliance or inconsistent depths of end-expiratory breath-holds. We therefore propose a combination of slice-following CSPAMM myocardial tagging with a segmented EPI imaging sequence. Together with an optimized RF excitation scheme, this enables to acquire as many as 20 systolic and diastolic grid-tagged images per cardiac cycle with a high tagging contrast during a short period of sustained respiration.
Resumo:
PURPOSE: To improve the tag persistence throughout the whole cardiac cycle by providing a constant tag-contrast throughout all the cardiac phases when using balanced steady-state free precession (bSSFP) imaging. MATERIALS AND METHODS: The flip angles of the imaging radiofrequency pulses were optimized to compensate for the tagging contrast-to-noise ratio (Tag-CNR) fading at later cardiac phases in bSSFP imaging. Complementary spatial modulation of magnetization (CSPAMM) tagging was implemented to improve the Tag-CNR. Numerical simulations were performed to examine the behavior of the Tag-CNR with the proposed method, and to compare the resulting Tag-CNR with that obtained from the more commonly used spoiled gradient echo (SPGR) imaging. A gel phantom, as well as five healthy human volunteers, were scanned on a 1.5T scanner using bSSFP imaging with and without the proposed technique. The phantom was also scanned with SPGR imaging. RESULTS: With the proposed technique, the Tag-CNR remained almost constant during the whole cardiac cycle. Using bSSFP imaging, the Tag-CNR was about double that of SPGR. CONCLUSION: The tag persistence was significantly improved when the proposed method was applied, with better Tag-CNR during the diastolic cardiac phase. The improved Tag-CNR will support automated tagging analysis and quantification methods.