19 resultados para Embedded Constructions

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was performed to assess the interlaboratory reproducibility of the molecular detection and identification of species of Zygomycetes from formalin-fixed paraffin-embedded kidney and brain tissues obtained from experimentally infected mice. Animals were infected with one of five species (Rhizopus oryzae, Rhizopus microsporus, Lichtheimia corymbifera, Rhizomucor pusillus, and Mucor circinelloides). Samples with 1, 10, or 30 slide cuts of the tissues were prepared from each paraffin block, the sample identities were blinded for analysis, and the samples were mailed to each of seven laboratories for the assessment of sensitivity. A protocol describing the extraction method and the PCR amplification procedure was provided. The internal transcribed spacer 1 (ITS1) region was amplified by PCR with the fungal universal primers ITS1 and ITS2 and sequenced. As negative results were obtained for 93% of the tissue specimens infected by M. circinelloides, the data for this species were excluded from the analysis. Positive PCR results were obtained for 93% (52/56), 89% (50/56), and 27% (15/56) of the samples with 30, 10, and 1 slide cuts, respectively. There were minor differences, depending on the organ tissue, fungal species, and laboratory. Correct species identification was possible for 100% (30 cuts), 98% (10 cuts), and 93% (1 cut) of the cases. With the protocol used in the present study, the interlaboratory reproducibility of ITS sequencing for the identification of major Zygomycetes species from formalin-fixed paraffin-embedded tissues can reach 100%, when enough material is available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O-Hexanoyl-3,5-diiodo-N-(4-azido-2-nitro-phenyl)tyramine has been used after photochemical conversion into the reactive nitrene to label (Na+,K+)-ATPase from Bufo marinus toad kidney. Immunochemical evidence indicates that the reagent labels both subunits of the enzyme in partially purified form as well as in microsomal membranes. These results support the view that the glycoprotein subunit, like the catalytic subunit, possesses hydrophobic domains by which it is integrated into the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 degrees C, as in vivo. Using two orthogonal methods, a common SLP (20 Wg(-1)) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Prognosis prediction for resected primary colon cancer is based on the T-stage Node Metastasis (TNM) staging system. We investigated if four well-documented gene expression risk scores can improve patient stratification. METHODS: Microarray-based versions of risk-scores were applied to a large independent cohort of 688 stage II/III tumors from the PETACC-3 trial. Prognostic value for relapse-free survival (RFS), survival after relapse (SAR), and overall survival (OS) was assessed by regression analysis. To assess improvement over a reference, prognostic model was assessed with the area under curve (AUC) of receiver operating characteristic (ROC) curves. All statistical tests were two-sided, except the AUC increase. RESULTS: All four risk scores (RSs) showed a statistically significant association (single-test, P < .0167) with OS or RFS in univariate models, but with HRs below 1.38 per interquartile range. Three scores were predictors of shorter RFS, one of shorter SAR. Each RS could only marginally improve an RFS or OS model with the known factors T-stage, N-stage, and microsatellite instability (MSI) status (AUC gains < 0.025 units). The pairwise interscore discordance was never high (maximal Spearman correlation = 0.563) A combined score showed a trend to higher prognostic value and higher AUC increase for OS (HR = 1.74, 95% confidence interval [CI] = 1.44 to 2.10, P < .001, AUC from 0.6918 to 0.7321) and RFS (HR = 1.56, 95% CI = 1.33 to 1.84, P < .001, AUC from 0.6723 to 0.6945) than any single score. CONCLUSIONS: The four tested gene expression-based risk scores provide prognostic information but contribute only marginally to improving models based on established risk factors. A combination of the risk scores might provide more robust information. Predictors of RFS and SAR might need to be different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tractography algorithms provide us with the ability to non-invasively reconstruct fiber pathways in the white matter (WM) by exploiting the directional information described with diffusion magnetic resonance. These methods could be divided into two major classes, local and global. Local methods reconstruct each fiber tract iteratively by considering only directional information at the voxel level and its neighborhood. Global methods, on the other hand, reconstruct all the fiber tracts of the whole brain simultaneously by solving a global energy minimization problem. The latter have shown improvements compared to previous techniques but these algorithms still suffer from an important shortcoming that is crucial in the context of brain connectivity analyses. As no anatomical priors are usually considered during the reconstruction process, the recovered fiber tracts are not guaranteed to connect cortical regions and, as a matter of fact, most of them stop prematurely in the WM; this violates important properties of neural connections, which are known to originate in the gray matter (GM) and develop in the WM. Hence, this shortcoming poses serious limitations for the use of these techniques for the assessment of the structural connectivity between brain regions and, de facto, it can potentially bias any subsequent analysis. Moreover, the estimated tracts are not quantitative, every fiber contributes with the same weight toward the predicted diffusion signal. In this work, we propose a novel approach for global tractography that is specifically designed for connectivity analysis applications which: (i) explicitly enforces anatomical priors of the tracts in the optimization and (ii) considers the effective contribution of each of them, i.e., volume, to the acquired diffusion magnetic resonance imaging (MRI) image. We evaluated our approach on both a realistic diffusion MRI phantom and in vivo data, and also compared its performance to existing tractography algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EHESS/CNRS, Programme de recherches interdisciplinaires sur le monde musulman périphérique