3 resultados para Data-Driven Behavior Modeling

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Odds ratios for head and neck cancer increase with greater cigarette and alcohol use and lower body mass index (BMI; weight (kg)/height(2) (m(2))). Using data from the International Head and Neck Cancer Epidemiology Consortium, the authors conducted a formal analysis of BMI as a modifier of smoking- and alcohol-related effects. Analysis of never and current smokers included 6,333 cases, while analysis of never drinkers and consumers of < or =10 drinks/day included 8,452 cases. There were 8,000 or more controls, depending on the analysis. Odds ratios for all sites increased with lower BMI, greater smoking, and greater drinking. In polytomous regression, odds ratios for BMI (P = 0.65), smoking (P = 0.52), and drinking (P = 0.73) were homogeneous for oral cavity and pharyngeal cancers. Odds ratios for BMI and drinking were greater for oral cavity/pharyngeal cancer (P < 0.01), while smoking odds ratios were greater for laryngeal cancer (P < 0.01). Lower BMI enhanced smoking- and drinking-related odds ratios for oral cavity/pharyngeal cancer (P < 0.01), while BMI did not modify smoking and drinking odds ratios for laryngeal cancer. The increased odds ratios for all sites with low BMI may suggest related carcinogenic mechanisms; however, BMI modification of smoking and drinking odds ratios for cancer of the oral cavity/pharynx but not larynx cancer suggests additional factors specific to oral cavity/pharynx cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Early Smoking Experience (ESE) questionnaire is the most widely used questionnaire to assess initial subjective experiences of cigarette smoking. However, its factor structure is not clearly defined and can be perceived from two main standpoints: valence, or positive and negative experiences, and sensitivity to nicotine. This article explores the ESE's factor structure and determines which standpoint was more relevant. It compares two groups of young Swiss men (German- and French-speaking). We examined baseline data on 3,368 tobacco users from a representative sample in the ongoing Cohort Study on Substance Use Risk Factors (C-SURF). ESE, continued tobacco use, weekly smoking and nicotine dependence were assessed. Exploratory structural equation modeling (ESEM) and structural equation modeling (SEM) were performed. ESEM clearly distinguished positive experiences from negative experiences, but negative experiences were divided in experiences related to dizziness and experiences related to irritations. SEM underlined the reinforcing effects of positive experiences, but also of experiences related to dizziness on nicotine dependence and weekly smoking. The best ESE structure for predictive accuracy of experiences on smoking behavior was a compromise between the valence and sensitivity standpoints, which showed clinical relevance.