93 resultados para Cosine function of operators

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced re'nal function has been reported with tenofovir disoproxil fumarate (TDF). It is not clear whether TDF co-administered with a boosted protease inhibitor (PI) leads to a greater decline in renal function than TDF co-administered with a non-nucleoside reverse transcriptase inhibitor (NNRTI).Methods: We selected ail antiretroviral therapy-naive patients in the Swiss HIV Cohort Study (SHCS) with calibrated or corrected serum creatinine measurements starting antiretroviral therapy with TDF and either efavirenz (EFV) or the ritonavir-boosted PIs, lopinavir (LPV/r) or atazanavir (ATV/r). As a measure of renal function, we used the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation to estimate the glomerular filtration rate (eGFR). We calculated the difference in eGFR over time between two therapies using a marginal model for repeated measures. In weighted analyses, observations were weighted by the product of their point of treatment and censoring weights to adjust for differences both in the sort of patients starting each therapy and in the sort of patients remaining on each therapy over time.Results: By March 2011, 940 patients with at least one creatinine measurement on a first therapy with either TDF and EFV (n=484), TDF and LPVlr (n=269) or TDF and ATV/r (n=187) had been followed for a median of 1. 7, 1.2 and 1.3 years, respectively. Table 1 shows the difference in average estimated GFR (eGFR) over time since starting cART for two marginal models. The first model was not adjusted for potential confounders; the second mode! used weights to adjust for confounders. The results suggest a greater decline in renal function during the first 6 months if TDF is used with a PI rather than with an NNRTI, but no further difference between these therapies after the first 6 months. TDF and ATV/r may lead to a greater decline in the first 6 months than TDF and LPVlr.Conclusions: TDF co-administered with a boosted PI leads to a greater de cline in renal function over the first 6 months of therapy than TDF co-administered with an NNRTI; this decline may be worse with ATV/r than with LPV/r.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A murine monoclonal antibody (SJL 2-4) specific for the antigen apo-cytochrome c was shown to inhibit both antigen-induced proliferation and lymphokine secretion by an apo-cytochrome c-specific BALB/c helper T cell clone. The inhibition was specific because additional apo-cytochrome c-specific T cell clones were not inhibited by the same monoclonal antibody. Time course studies of the inhibition indicated that the initial 8 hr of contact between T cell clones and antigen-presenting cells were critical for activation of the T cell clones. Inhibition of T cell functions by antigen-specific antibodies appeared to correlate with the antibody-antigen binding constant because a second monoclonal antibody (Cyt-1-59), with identical specificity but with a lower affinity constant for apo-cytochrome c, had very little inhibitory effect on the proliferation or lymphokine secretion of apo-cytochrome c-specific T cell clones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon infection with the protozoan parasite Leishmania major, susceptible BALB/c mice develop unhealing lesions associated with the maturation of CD4(+)Th2 cells secreting IL-4. In contrast, resistant C57BL/6 mice heal their lesions, because of expansion and secretion of IFN-gamma of CD4(+) Th1 cells. The Fas-FasL pathway, although not involved in Th cell differentiation, was reported to be necessary for complete resolution of lesions. We investigate here the role of IFN-gamma and IL-4 on Fas-FasL nonapoptotic signaling events leading to the modulation of macrophage activation. We show that addition of FasL and IFN-gamma to BMMø led to their increased activation, as reflected by enhanced secretion of TNF, IL-6, NO, and the induction of their microbicidal activity, resulting in the killing of intracellular L. major. In contrast, the presence of IL-4 decreased the synergy of IFN-gamma/FasL significantly on macrophage activation and the killing of intracellular L. major. These results show that FasL synergizes with IFN-gamma to activate macrophages and that the tight regulation by IFN-gamma and/or IL-4 of the nonapoptotic signaling events triggered by the Fas-FasL pathway affects significantly the activation of macrophages to a microbicidal state and may thus contribute to the pathogenesis of L. major infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Experimental data have suggested that adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs), capable of controlling immune responses to specifi c auto- or alloantigens, could be used as a therapeutic strategy to promote specifi c tolerance in T-cell mediated diseases and in organ transplantation (Tx). However, before advocating the application of immunotherapy with Tregs in Tx, we need to improve our understanding of their in vivo homeostasis, traffi cking pattern and effector function in response to alloantigens. Methods : Donor-antigen specifi c murine Tregs were generated and characterized in vitro following our described protocols. Using an adoptive transfer and skin allotransplantation model, we have analyzed the in vivo expansion and homing of fl uorescent-labeled effector T cells (Teff) and Tregs, at different time-points after Tx, using fl ow-cytometry as well as fl uorescence microscopy techniques. Results: Tregs expressed CD62L, CCR7 and CD103 allowing their homing into lymphoid and non-lymphoid tissues (gut, skin) after intravenous injection. While hyporesponsive to TCR stimulation in vitro, transferred Tregs survived, migrated to secondary lymphoid organs and preferentially expanded within the allograft draining lymph nodes. Furthermore, Foxp3+ cells could be detected inside the allograft as early as day 3-5 after Tx. At a much later time-point (day 60 after Tx), graft-infi ltrating Foxp3+ cells were also detectable in tolerant recipients. When transferred alone, CD4+CD25- Teff cells expanded within secondary lymphoid organs and infi ltrated the allograft by day 3-5 after Tx. The co-transfer of Tregs limited the expansion of alloreactive Teff cells as well as their recruitment into the allograft. The promotion of graft survival observed in the presence of Tregs was in part mediated by the inhibition of the production of effector cytokines by CD4+CD25- T cells. Conclusion: Taken together, our results suggest that the suppression of allograft rejection and the induction of Tx tolerance are in part dependant on the alloantigendriven homing and expansion of Tregs. Thus, the appropriate localization of Tregs may be critical for their suppressive function in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. EXPERIMENTAL DESIGN: We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. RESULTS: TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. CONCLUSIONS: These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response. Clin Cancer Res; 19(13); 3439-49. ©2013 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Onecut homeodomain transcription factor hepatic nuclear factor 6 (Hnf6) is necessary for proper development of islet beta-cells. Hnf6 is initially expressed throughout the pancreatic epithelium but is downregulated in endocrine cells at late gestation and is not expressed in postnatal islets. Transgenic mice in which Hnf6 expression is maintained in postnatal islets (pdx1(PB)Hnf6) show overt diabetes and impaired glucose-stimulated insulin secretion (GSIS) at weaning. We now define the mechanism whereby maintenance of Hnf6 expression postnatally leads to beta-cell dysfunction. We provide evidence that continued expression of Hnf6 impairs GSIS by altering insulin granule biosynthesis, resulting in a reduced response to secretagogues. Sustained expression of Hnf6 also results in downregulation of the beta-cell-specific transcription factor MafA and a decrease in total pancreatic insulin. These results suggest that downregulation of Hnf6 expression in beta-cells during development is essential to achieve a mature, glucose-responsive beta-cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractAcidosis is encountered during tissue inflammation and triggers pain in humans. H+-gated ion channels are expressed at high levels in sensory neurons of the peripheral nervous system. Ion channels from two different families present the required pH sensitivity to detect the acidosis associated with peripheral inflammation: Acid-Sensing Ion Channels (ASICs) and the Transient Receptor Potential Vanilloid-1 (TRPV1) channel.ASICs are members of the Degenerin/Epithelial Na+ Channel family of ion channels. Six ASIC subunits have been identified in mammals (ASICla, -lb, -2a, -2b, -3 and -4). ASICs form In-activated voltage-insensitive homo- or heterotrimeric Na+ channels. TRPV1 is a member of the TRP family of ion channels and forms non-selective cation channels that mediate a sustained current. TRPV1 is activated by H+, heat (T>43°C), lipids, capsaicin, voltage and other stimuli. A stimulus can increase TRPV1 response to a different stimulus. For example H+ can shift the capsaicin concentration dependence of TRPV1 to lower values. ASICs and TRPV1 have been shown to be involved in inflammatory pain. Using the patch-clamp technique, we studied different aspects of the function of ASICs and TRPV1 in the physiological context of pain.In the first part of this thesis, we characterize the effect of a temperature increase from 25 to 35°C on the function of ASICs and TRPV1 in transfected CHO cells and primary cultures of rat DRG sensory neurons. ASICs give rise to transient currents while TRPV1 mediates a sustained current. In addition, ASICs and TRPV1 respond to H+ with distinct pH dependences. We assess the relative contribution of ASICs and TRPV1 to H+-evoked electrical signaling in rat DRG neurons and we conclude that ASICs are the most important pH sensors in the pH range 7.4 to 6.0 at 35°C in sensory neurons.ASICs and TRPV1 are expressed in the epithelium lining the lumen of the bladder (urothelium). The Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) is a painful condition associated with a dysfunction of the urothelial barrier and with inflammation. In the second part of this thesis, we show that human urothelial cells -the cell line TEU2 and primary cultures of human bladder urothelium- express functional ASICs but no functional TRPV1 channels. In addition, we show that the levels of ASIC2 and ASIC3 mRNA are increased in the urothelium of patients suffering from BPS/IC. These data suggest that ASICs are involved in the pathology of BPS/IC.Finally, we demonstrate that APETx2 inhibits the sensory neuron specific voltage-dependent Na+ channel Nav1.8. APETx2 was previously shown to inhibit homo- or heterotrimeric ASIC3- containing channels with IC5o from 0.08 to 1 μΜ. We show that APETx2 also inhibits Nav1.8 with an ICsoof «2.6 μΜ. APETx2 reduces the maximal conductance and induces a depolarizing shift in the voltage dependence of activation of Nav1.8. In current-clamp experiments, APETx2 reduces the number of action potentials (APs) evoked by a current ramp. Nav1.8 mediates most of the current during the AP upstroke and has been shown to be an important mediator of inflammatory pain. The fact that APETx2 inhibits two ion channels involved in inflammatory pain suggests that APETx2 or derivatives may represent novel analgesic compounds.RésuméL'acidose tissulaire est observée durant l'inflammation et entraine la douleur chez l'humain. Des canaux ioniques activés par les protons (H+) sont fortement exprimés dans les neurones sensoriels du système nerveux périphérique. De ceux-ci, les Acid-Sensing Ion Channels [ASICs) et Transient Receptor Potential Vanilloid-1 (TRPV1) présentent une sensibilité adéquate à l'acidité pour servir de détecteurs d'acidose.Les ASICs sont membres de la famille Degenerin/Epithelial Na* Channel. Six sous-unités ASIC ont été identifiées chez les mammifères (ASICla, -lb, -2a, -2b, -3 et -4). Les ASICs forment des canaux sélectifs au Na\ insensibles au voltage et activés par les H+. Les canaux fonctionnels sont des homo- ou hétérotrimères de sous-unités ASIC. TRPV1 est un membre de la famille TRP de canaux ioniques. Les canaux TRPV1 sont activés par les H+, la chaleur (T>43°Ç), les lipides, la capsaicine, le voltage et d'autres stimulus. L'activation de TRPV1 entraine un courant soutenu non-sélectif. Un stimulus peut augmenter la réponse de TRPV1 à un autre stimulus. Les H+ peuvent, par exemple, induire un décalage vers des valeurs plus faibles de la courbe de dépendance à la concentration de TRPV1 pour la capsaicine. Il a été démontré que les ASICs et TRPV1 sont impliqués dans la douleur inflammatoire. En utilisant la technique du patch-clamp, nous avons étudié différents aspects de la fonction des ASICs et de TRPV1 dans des contextes associés à la douleur.Dans la première partie de cette thèse, nous caractérisons l'effet d'une augmentation de température de 25 à 35°C sur la fonction des canaux ASICs et TRPV1, dans des cellules CHO transfectées et dans des cultures primaires de neurones sensoriels (DRG) de rat. L'activation des ASICs entraine l'apparition d'un courant transitoire tandis que l'activation de TRPV1 entraine un courant soutenu. De plus, les ASICs et TRPV1 possèdent des dépendances au pH différentes. Nous évaluons la contribution relative des ASICs et de TRPV1 au signalement électrique induit par les H+ et nous concluons que les ASICs sont les senseurs d'acidité les plus importants dans les neurones sensoriels, dans le domaine de pH de 7.4 à 6.0, à température corporelle.Les ASICs et TRPV1 sont exprimés dans l'épithélium recouvrant l'intérieur de la vessie (l'urothélium). Le Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) est une condition médicale douloureuse associée à une dysfonction de la barrière urothéliale et à une inflammation. Dans la seconde partie de cette thèse, nous démontrons que des cellules urothéliales (de la lignée cellulaire TEU2) et des cellules provenant de cultures primaires d'épithéliums de vessies humaines expriment des canaux ASIC fonctionnels mais pas de TRPV1 fonctionnels. De plus, nous montrons que le niveau d'expression de ASIC2 et -3 est augmenté dans l'urothélium de la vessie de patients souffrant de BPS/IC. Ces données suggèrent que les ASICs sont impliqués dans la pathologie BPS/IC.Pour finir, nous démontrons que la toxine APETx2 inhibe le canal spécifique aux neurones sensoriels Nav1.8, un membre de la famille des canaux sodiques dépendants du potentiel. Il a été démontré précédemment que la toxine APETx2 inhibe les canaux contenant une ou plusieurs sous-unités ASIC3 avec un ICso entre 0.08 et 1 μΜ. Nous montrons que la toxine APETx2 inhibe Nav1.8 avec un IC50 de «2.6 μΜ. La toxine APETx2 réduit la conductance maximale et induit un décalage de la dépendance au potentiel de Nav1.8 vers des valeurs plus positives. Dans des expériences de courant imposé sur des neurones sensoriels, la toxine APETx2 réduit le nombre de potentiels d'action induits par une rampe de courant. Nav1.8 est responsable de la majeure partie du courant durant la phase ascendante du potentiel d'action et a été démontré comme étant un médiateur important de la douleur inflammatoire. L'inhibition de deux types de canaux, impliqués dans la douleurs inflammatoire, par la toxine APETx2, suggère que cette dernière ou ses dérivés représentent des composés analgésiques prometteurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factor D is an essential enzyme for activation of complement by the alternative pathway (AP). It has been difficult to obtain mouse monoclonal antibodies (Mabs) which block the function of factor D. We have developed a strategy to obtain such Mabs using a double screening procedure of the initial clones. We selected the clone whose supernatant had the lowest level of anti-factor D Ab by ELISA and abolished factor D haemolytic activity. Addition of this Mab to human serum was shown to abolish conversion of C3 by cobra venom factor, haemolysis of rabbit erythrocytes, and activation of C3 and C5 by cuprophane dialysis membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although tumor-specific CD8 T-cell responses often develop in cancer patients, they rarely result in tumor eradication. We aimed at studying directly the functional efficacy of tumor-specific CD8 T cells at the site of immune attack. Tumor lesions in lymphoid and nonlymphoid tissues (metastatic lymph nodes and soft tissue/visceral metastases, respectively) were collected from stage III/IV melanoma patients and investigated for the presence and function of CD8 T cells specific for the tumor differentiation antigen Melan-A/MART-1. Comparative analysis was conducted with peripheral blood T cells. We provide evidence that in vivo-priming selects, within the available naive Melan-A/MART-1-specific CD8 T-cell repertoire, cells with high T-cell receptor avidity that can efficiently kill melanoma cells in vitro. In vivo, primed Melan-A/MART-1-specific CD8 T cells accumulate at high frequency in both lymphoid and nonlymphoid tumor lesions. Unexpectedly, however, whereas primed Melan-A/MART-1-specific CD8 T cells that circulate in the blood display robust inflammatory and cytotoxic functions, those that reside in tumor lesions (particularly in metastatic lymph nodes) are functionally tolerant. We show that both the lymph node and the tumor environments blunt T-cell effector functions and offer a rationale for the failure of tumor-specific responses to effectively counter tumor progression.