118 resultados para Constitutive metabolites
em Université de Lausanne, Switzerland
Resumo:
To study the stress-induced effects caused by wounding under a new perspective, a metabolomic strategy based on HPLC-MS has been devised for the model plant Arabidopsis thaliana. To detect induced metabolites and precisely localise these compounds among the numerous constitutive metabolites, HPLC-MS analyses were performed in a two-step strategy. In a first step, rapid direct TOF-MS measurements of the crude leaf extract were performed with a ballistic gradient on a short LC-column. The HPLC-MS data were investigated by multivariate analysis as total mass spectra (TMS). Principal components analysis (PCA) and hierarchical cluster analysis (HCA) on principal coordinates were combined for data treatment. PCA and HCA demonstrated a clear clustering of plant specimens selecting the highest discriminating ions given by the complete data analysis, leading to the specific detection of discrete-induced ions (m/z values). Furthermore, pool constitution with plants of homogeneous behaviour was achieved for confirmatory analysis. In this second step, long high-resolution LC profilings on an UPLC-TOF-MS system were used on pooled samples. This allowed to precisely localise the putative biological marker induced by wounding and by specific extraction of accurate m/z values detected in the screening procedure with the TMS spectra.
Resumo:
T cell factor-1 (TCF-1) and lymphoid enhancer-binding factor 1, the effector transcription factors of the canonical Wnt pathway, are known to be critical for normal thymocyte development. However, it is largely unknown if it has a role in regulating mature T cell activation and T cell-mediated immune responses. In this study, we demonstrate that, like IL-7Ralpha and CD62L, TCF-1 and lymphoid enhancer-binding factor 1 exhibit dynamic expression changes during T cell responses, being highly expressed in naive T cells, downregulated in effector T cells, and upregulated again in memory T cells. Enforced expression of a p45 TCF-1 isoform limited the expansion of Ag-specific CD8 T cells in response to Listeria monocytogenes infection. However, when the p45 transgene was coupled with ectopic expression of stabilized beta-catenin, more Ag-specific memory CD8 T cells were generated, with enhanced ability to produce IL-2. Moreover, these memory CD8 T cells expanded to a larger number of secondary effectors and cleared bacteria faster when the immunized mice were rechallenged with virulent L. monocytogenes. Furthermore, in response to vaccinia virus or lymphocytic choriomeningitis virus infection, more Ag-specific memory CD8 T cells were generated in the presence of p45 and stabilized beta-catenin transgenes. Although activated Wnt signaling also resulted in larger numbers of Ag-specific memory CD4 T cells, their functional attributes and expansion after the secondary infection were not improved. Thus, constitutive activation of the canonical Wnt pathway favors memory CD8 T cell formation during initial immunization, resulting in enhanced immunity upon second encounter with the same pathogen.
Resumo:
Captan and folpet are fungicides largely used in agriculture. They have similar chemical structures, except that folpet has an aromatic ring unlike captan. Their half-lives in blood are very short, given that they are readily broken down to tetrahydrophthalimide (THPI) and phthalimide (PI), respectively. Few authors measured these biomarkers in plasma or urine, and analysis was conducted either by gas chromatography coupled to mass spectrometry or liquid chromatography with UV detection. The objective of this study was thus to develop simple, sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS) methods to quantify both THPI and PI in human plasma and urine. Briefly, deuterated THPI was added as an internal standard and purification was performed by solid-phase extraction followed by LC/APCI-MS/MS analysis in negative ion mode for both compounds. Validation of the methods was conducted using spiked blank plasma and urine samples at concentrations ranging from 1 to 250 μg/L and 1 to 50 μg/L, respectively, along with samples of volunteers and workers exposed to captan or folpet. The methods showed a good linearity (R (2) > 0.99), recovery (on average 90% for THPI and 75% for PI), intra- and inter-day precision (RSD, <15%) and accuracy (<20%), and stability. The limit of detection was 0.58 μg/L in urine and 1.47 μg/L in plasma for THPI and 1.14 and 2.17 μg/L, respectively, for PI. The described methods proved to be accurate and suitable to determine the toxicokinetics of both metabolites in human plasma and urine.
Resumo:
BACKGROUND: An LC-MS/MS method has been developed for the simultaneous quantification of P-glycoprotein (P-gp) and cytochrome P450 (CYP) probe substrates and their Phase I metabolites in DBS and plasma. P-gp (fexofenadine) and CYP-specific substrates (caffeine for CYP1A2, bupropion for CYP2B6, flurbiprofen for CYP2C9, omeprazole for CYP2C19, dextromethorphan for CYP2D6 and midazolam for CYP3A4) and their metabolites were extracted from DBS (10 µl) using methanol. Analytes were separated on a reversed-phase LC column followed by SRM detection within a 6 min run time. RESULTS: The method was fully validated over the expected clinical concentration range for all substances tested, in both DBS and plasma. The method has been successfully applied to a PK study where healthy male volunteers received a low dose cocktail of the here described P-gp and CYP probes. Good correlation was observed between capillary DBS and venous plasma drug concentrations. CONCLUSION: Due to its low-invasiveness, simple sample collection and minimal sample preparation, DBS represents a suitable method to simultaneously monitor in vivo activities of P-gp and CYP.
Resumo:
A two-step high-performance liquid chromatography method is described, using a CN column and an alpha 1-acid glycoprotein column, which allows the measurement of the enantiomers of the hydroxy metabolites of trimipramine in plasma of trimipramine-treated patients. Of the four patients analyzed, three showed approximately equimolar concentrations of the (D)- and (L)-enantiomers of the hydroxy metabolites (2-hydroxy-trimipramine and 2-hydroxy desmethyltrimipramine), and one was found to have roughly twice as much of the (L)-form and of the (D)-form of 2-hydroxy trimipramine and 2-hydroxy desmethyltrimipramine. From the data available on the pharmacological effects of the enantiomers of trimipramine, it is postulated that this interindividual variability in its pharmacokinetics is another factor that could contribute to the interindividual variability in its pharmacodynamics.
Resumo:
A gas chromatography-mass spectrometry (GC-MS) method is presented which allows the simultaneous determination of the plasma concentrations of the levo-alpha-acetylmethadol (LAAM) and of its active metabolites (NorLAAM and DiNorLAAM), after derivatization with the reagent trifluoroacetic anhydride (TFAA). No interferences from endogenous compounds were observed following the extraction of plasma samples from 11 different human subjects. The standard curves were linear over a working range of 5-200ng/ml for the three compounds. Recoveries measured at three concentrations ranged from 47 to 67% for LAAM, from 50 to 69% for NorLAAM and from 28 to 50% for DiNorLAAM. Intra- and interday coefficients of variation determined at three concentrations ranged from 5 to 13% for LAAM, from 3 to 9% for NorLAAM and from 5 to 13% for DiNorLAAM. The limits of quantitation of the method were found to be 4ng/ml for the three compounds. No interference was noted from methadone. This sensitive and specific analytical method could be useful for assessing the in vivo relationship between LAAM's blood levels, clinical efficacy and/or cardiotoxicity
Resumo:
Dissecting drivers of plant defence investment remains central for understanding the assemblage of communities across different habitats. There is increasing evidence that direct defence strategies against herbivores, including secondary metabolites production, differ along ecological gradients in response to variation in biotic and abiotic conditions. In contrast, intraspecific variation in indirect defences remains unexplored. Here, we investigated variation in herbivory rate, resistance to herbivores, and indirect defences in ant-attracting Vicia species along the elevation gradient of the Alps. Specifically, we compared volatile organic compounds (VOCs) and ant attraction in high and low elevation ecotypes. Consistent with adaptation to the lower herbivory conditions that we detected at higher elevations in the field, high elevation plants were visited by fewer ants and were more susceptible to herbivore attack. In parallel, constitutive volatile organic compound production and subsequent ant attraction were lower in the high elevation ecotypes. We observed an elevation-driven trade-off between constitutive and inducible production of VOCs and ant attraction along the environmental cline. At higher elevations, inducible defences increased, while constitutive defence decreased, suggesting that the high elevation ecotypes compensate for lower indirect constitutive defences only after herbivore attack. Synthesis. Overall, direct and indirect defences of plants vary along elevation gradients. Our findings show that plant allocation to defences are subject to trade-offs depending on local conditions, and point to a feedback mechanism linking local herbivore pressure, predator abundance and the defence investment of plants.
Resumo:
We have prepared transgenic mice whose T cells constitutively express a chimeric receptor combining extracellular human IL-4R and intracellular IL-2Rbeta segments. This receptor can transmit IL-2/IL-15-like signals in response to human, but not mouse, IL-4. We used these animals to explore to what extent functional IL-2R/IL-15R expression controls the capacity of T cells to proliferate in response to IL-2/IL-15-like signals. After activation with Con A, naive transgenic CD8+ and CD4+ T cells respond to human IL-4 as well as to IL-2. Without prior activation, they failed to proliferate in response to human IL-4, although human IL-4 did prolong their survival. Thus, IL-2-induced proliferation of activated T cells requires at least one other Ag-induced change apart from the induction of a functional IL-2R. However, a fraction of CD8+CD44high T cells proliferate in human IL-4 without antigenic stimulation or syngeneic feeder cells. In contrast, CD4+CD44high T cells are not constitutively responsive to human IL-4. We conclude that although all transgenic T cells express a functional chimeric receptor, only some CD8+CD44high T cells contain all molecules required for entry into the cell cycle in response to human IL-4 or IL-15.
Resumo:
Nandrolone (19-nortestosterone) is a widely used anabolic steroid in sports where strength plays an essential role. Once nandrolone has been metabolised, two major metabolites are excreted in urine, 19-norandrosterone (NA) and 19-noretiocholanolone (NE). In 1997, in France, quite a few sportsmen had concentrations of 19-norandrosterone very close to the IOC cut off limit (2ng/ml). At that time, a debate took place about the capability of the human male body to produce by itself these metabolites without any intake of nandrolone or related compounds. The International Football Federation (FIFA) was very concerned with this problematic, especially because the World Cup was about to start in France. In this respect, a statistical study was held with all football players from the first and second divisions of the Swiss Football National League. All players gave a urine sample after effort and around 6% of them showed traces of 19-norandrosterone. These results were compared with amateur football players (control group) and around 6% of them had very small amounts of 19-norandrosterone and/or 19-noretiocholanolone in urine after effort, whereas none of them had detectable traces of one or the other metabolite before effort. The origin of these compounds in urine after a strenuous physical activity is still unknown, but three hypotheses can be put forward. First, an endogenous production of nandrolone metabolites takes place. Second, nandrolone metabolites are released from the fatty tissues after an intake of nandrolone, some related compounds or some contaminated nutritive supplements. Finally, the sportsmen may have taken something during or just before the football game.
Resumo:
Among the various determinants of treatment response, the achievement of sufficient blood levels is essential for curing malaria. For helping us at improving our current understanding of antimalarial drugs pharmacokinetics, efficacy and toxicity, we have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 200mul of plasma for the simultaneous determination of 14 antimalarial drugs and their metabolites which are the components of the current first-line combination treatments for malaria (artemether, artesunate, dihydroartemisinin, amodiaquine, N-desethyl-amodiaquine, lumefantrine, desbutyl-lumefantrine, piperaquine, pyronaridine, mefloquine, chloroquine, quinine, pyrimethamine and sulfadoxine). Plasma is purified by a combination of protein precipitation, evaporation and reconstitution in methanol/ammonium formate 20mM (pH 4.0) 1:1. Reverse-phase chromatographic separation of antimalarial drugs is obtained using a gradient elution of 20mM ammonium formate and acetonitrile both containing 0.5% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 21min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effect variability, overall process efficiency, standard addition experiments as well as antimalarials short- and long-term stability in plasma. The reactivity of endoperoxide-containing antimalarials in the presence of hemolysis was tested both in vitro and on malaria patients samples. With this method, signal intensity of artemisinin decreased by about 20% in the presence of 0.2% hemolysed red-blood cells in plasma, whereas its derivatives were essentially not affected. The method is precise (inter-day CV%: 3.1-12.6%) and sensitive (lower limits of quantification 0.15-3.0 and 0.75-5ng/ml for basic/neutral antimalarials and artemisinin derivatives, respectively). This is the first broad-range LC-MS/MS assay covering the currently in-use antimalarials. It is an improvement over previous methods in terms of convenience (a single extraction procedure for 14 major antimalarials and metabolites reducing significantly the analytical time), sensitivity, selectivity and throughput. While its main limitation is investment costs for the equipment, plasma samples can be collected in the field and kept at 4 degrees C for up to 48h before storage at -80 degrees C. It is suited to detecting the presence of drug in subjects for screening purposes and quantifying drug exposure after treatment. It may contribute to filling the current knowledge gaps in the pharmacokinetics/pharmacodynamics relationships of antimalarials and better define the therapeutic dose ranges in different patient populations.
Resumo:
The α(1b)-adrenergic receptor (AR) was, after rhodopsin, the first G protein-coupled receptor (GPCR) in which point mutations were shown to trigger constitutive (agonist-independent) activity. Constitutively activating mutations have been found in other AR subtypes as well as in several GPCRs. This chapter briefly summarizes the main findings on constitutively active mutants of the α(1a)- and α(1b)-AR subtypes and the methods used to predict activating mutations, to measure constitutive activity of Gq-coupled receptors and to investigate inverse agonism. In addition, it highlights the implications of studies on constitutively active AR mutants on elucidating the molecular mechanisms of receptor activation and drug action.
Resumo:
Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image-guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II-IV using ex vivo proton high-resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter-grade conversions. Importantly, the myo-inositol to total choline index allowed for a separation of recurrent low-grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco-metabolite D-2-hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra-grade and intra-lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients.
Resumo:
AIM: Antidoping procedures are expected to greatly benefit from untargeted metabolomic approaches through the discovery of new biomarkers of prohibited substances abuse. RESULTS: Endogenous steroid metabolites were monitored in urine samples from a controlled elimination study of testosterone undecanoate after ingestion. A platform coupling ultra-high pressure LC with high-resolution quadrupole TOF MS was used and high between-subject metabolic variability was successfully handled using a multiblock data analysis strategy. Links between specific subsets of metabolites and influential genetic polymorphisms of the UGT2B17 enzyme were highlighted. CONCLUSION: This exploratory metabolomic strategy constitutes a first step toward a better understanding of the underlying patterns driving the high interindividual variability of steroid metabolism. Promising biomarkers were selected for further targeted study.
Resumo:
The idea that a receptor can produce signalling without agonist intervention and that several antagonists can be 'active' in repressing such spontaneous activity is contained in the concept of ligand-induced conformational changes. Yet, this idea was neglected by pharmacologists for many years. In this article, we review the events that brought inverse agonism and constitutive activity to general attention and made this phenomenon a topic of current research. We also suggest a classification of antagonists based on the cooperativity that links their primary site of interaction with other functional domains of the receptor.
Resumo:
Consumption of nicotine in the form of smokeless tobacco (snus, snuff, chewing tobacco) or nicotine-containing medication (gum, patch) may benefit sport practice. Indeed, use of snus seems to be a growing trend and investigating nicotine consumption amongst professional athletes is of major interest to sport authorities. Thus, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection and quantification of nicotine and its principal metabolites cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide in urine was developed. Sample preparation was performed by liquid-liquid extraction followed by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) operated in electrospray positive ionization (ESI) mode with selective reaction monitoring (SRM) data acquisition. The method was validated and calibration curves were linear over the selected concentration ranges of 10-10,000 ng/mL for nicotine, cotinine, trans-3-hydroxycotinine and 10-5000 ng/mL for nicotine-N'-oxide and cotinine-N-oxide, with calculated coefficients of determination (R(2)) greater than 0.95. The total extraction efficiency (%) was concentration dependent and ranged between 70.4 and 100.4%. The lower limit of quantification (LLOQ) for all analytes was 10 ng/mL. Repeatability and intermediate precision were ?9.4 and ?9.9%, respectively. In order to measure the prevalence of nicotine exposure during the 2009 Ice Hockey World Championships, 72 samples were collected and analyzed after the minimum of 3 months storage period and complete removal of identification means as required by the 2009 International Standards for Laboratories (ISL). Nicotine and/or metabolites were detected in every urine sample, while concentration measurements indicated an exposure within the last 3 days for eight specimens out of ten. Concentrations of nicotine, cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide were found to range between 11 and 19,750, 13 and 10,475, 10 and 8217, 11 and 3396, and 13 and 1640 ng/mL, respectively. When proposing conservative concentration limits for nicotine consumption prior and/or during the games (50 ng/mL for nicotine, cotinine and trans-3-hydroxycotinine and 25 ng/mL for nicotine-N'-oxide and cotinine-N-oxide), about half of the hockey players were qualified as consumers. These findings significantly support the likelihood of extensive smokeless nicotine consumption. However, since such conclusions can only be hypothesized, the potential use of smokeless tobacco as a doping agent in ice hockey requires further investigation.