136 resultados para Closed swimming chambers, gas chromatography
em Université de Lausanne, Switzerland
Resumo:
Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. The different gases are separated by specific columns but, if hydrogen (H2 ) is present in the sample, its detection can be performed by a thermal conductivity detector or a helium ionization detector. Indeed, coupled to GC, no other detector can perform this detection except the expensive atomic emission detector. Based on the detection and analysis of H2 isotopes by low-pressure chemical ionization mass spectrometry (MS), a new method for H2 detection by GC coupled to MS with an electron ionization ion source and a quadrupole analyser is presented. The presence of H2 in a gaseous mixture could easily be put in evidence by the monitoring of the molecular ion of the protonated carrier gas. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.
Resumo:
Furosemide (FD: Lasix) is a loop diuretic which strongly increases both urine flow and electrolyte urinary excretion. Healthy volunteers were administered 40 mg orally (dissolved in water) and concentrations of FD were determined in serum and urine for up to 6 h for eight subjects, who absorbed water at a rate of 400 ml/h. Quantification was performed by HPLC with fluorescence detection (excitation at 233 nm, emission at 389 nm) with a limit of detection of 5 ng/ml for a 300-microliters sample. The elution of FD was completed within 4 min using a gradient of acetonitrile concentration rising from 30 to 50% in 0.08 M phosphoric acid. The delay to the peak serum concentration ranged from 60 to 120 min. FD was still easily measurable in the sera from all subjects 6 h after administration. In urine, the excretion rates reached their maximum between 1 and 3 h. The total amount of FD excreted in the urine averaged 11.2 mg (range 7.6-14.0 mg), with a mean urine volume of 3024 ml (range 2620-3596 ml). Moreover, the urine density was lower than 1.010 (recommended as an upper limit in doping analysis to screen diuretics) only for 2 h. An additional volunteer was administered 40 mg of FD and his urine was collected over a longer period. FD was still detectable 48 h after intake. Gas chromatography-mass spectrometry with different types of ionization was used to confirm the occurrence of FD after permethylation of the extract. Negative-ion chemical ionization, with ammonia as reactant gas, was found to be the most sensitive method of detection.
Resumo:
A novel approach to measure carbon dioxide (CO2) in gaseous samples, based on a precise and accurate quantification by (13)CO2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable in the routine determination of CO2. The main drawback of the GC methods discussed in the literature for CO2 measurement is the lack of a specific internal standard necessary to perform quantification. CO2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ((13)CO2) on the basis of the stoichiometric formation of CO2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH(13)CO3). This method allows a precise measurement of CO2 concentration and was validated on various human postmortem gas samples in order to study its efficiency.
Resumo:
Limited information is available regarding the methodology required to characterize hashish seizures for assessing the presence or the absence of a chemical link between two seizures. This casework report presents the methodology applied for assessing that two different police seizures were coming from the same block before this latter one was split. The chemical signature was extracted using GC-MS analysis and the implemented methodology consists in a study of intra- and inter-variability distributions based on the measurement of the chemical profiles similarity using a number of hashish seizures and the calculation of the Pearson correlation coefficient. Different statistical scenarios (i.e., a combination of data pretreatment techniques and selection of target compounds) were tested to find the most discriminating one. Seven compounds showing high discrimination capabilities were selected on which a specific statistical data pretreatment was applied. Based on the results, the statistical model built for comparing the hashish seizures leads to low error rates. Therefore, the implemented methodology is suitable for the chemical profiling of hashish seizures.
Resumo:
A gas chromatography-mass spectrometry (GC-MS) method is presented which allows the simultaneous determination of the plasma concentrations of the levo-alpha-acetylmethadol (LAAM) and of its active metabolites (NorLAAM and DiNorLAAM), after derivatization with the reagent trifluoroacetic anhydride (TFAA). No interferences from endogenous compounds were observed following the extraction of plasma samples from 11 different human subjects. The standard curves were linear over a working range of 5-200ng/ml for the three compounds. Recoveries measured at three concentrations ranged from 47 to 67% for LAAM, from 50 to 69% for NorLAAM and from 28 to 50% for DiNorLAAM. Intra- and interday coefficients of variation determined at three concentrations ranged from 5 to 13% for LAAM, from 3 to 9% for NorLAAM and from 5 to 13% for DiNorLAAM. The limits of quantitation of the method were found to be 4ng/ml for the three compounds. No interference was noted from methadone. This sensitive and specific analytical method could be useful for assessing the in vivo relationship between LAAM's blood levels, clinical efficacy and/or cardiotoxicity
Resumo:
Since GHB (gamma-hydroxybutyric acid) is naturally produced in the human body, clinical and forensic toxicologists must be able to discriminate between endogenous levels and a concentration resulting from exposure. To suggest an alternative to the use of interpretative concentration cut-offs, the detection of exogenous GHB in urine specimens was investigated by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). GHB was isolated from urinary matrix by successive purification on Oasis MCX and Bond Elute SAX solid-phase extraction (SPE) cartridges prior to high-performance liquid chromatography (HPLC) fractioning using an Atlantis dC18 column eluted with a mixture of formic acid and methanol. Subsequent intramolecular esterification of GHB leading to the formation of gamma-butyrolactone (GBL) was carried out to avoid introduction of additional carbon atoms for carbon isotopic ratio analysis. A precision of 0.3 per thousand was determined using this IRMS method for samples at GHB concentrations of 10 mg/L. The (13)C/(12)C ratios of GHB in samples of subjects exposed to the drug ranged from -32.1 to -42.1 per thousand, whereas the results obtained for samples containing GHB of endogenous origin at concentration levels less than 10 mg/L were in the range -23.5 to -27.0 per thousand. Therefore, these preliminary results show that a possible discrimination between endogenous and exogenous GHB can be made using carbon isotopic ratio analyses.
Sensitive headspace gas chromatography analysis of free and conjugated 1-methoxy-2-propanol in urine
Resumo:
Glycol ethers still continue to be a workplace hazard due to their important use on an industrial scale. Currently, chronic occupational exposures to low levels of xenobiotics become increasingly relevant. Thus, sensitive analytical methods for detecting biomarkers of exposure are of interest in the field of occupational exposure assessment. 1-Methoxy-2-propanol (1M2P) is one of the dominant glycol ethers and the unmetabolized urinary fraction has been identified to be a good biological indicator of exposure. An existing analytical method including a solid-phase extraction and derivatization before GC/FID analysis is available but presents some disadvantages. We present here an alternative method for the determination of urinary 1M2P based on the headspace gas chromatography technique. We determined the 1M2P values by the direct headspace method for 47 samples that had previously been assayed by the solid-phase extraction and derivatization gas chromatography procedure. An inter-method comparison based on a Bland-Altman analysis showed that both techniques can be used interchangeably. The alternative method showed a tenfold lower limit of detection (0.1 mg/L) as well as good accuracy and precision which were determined by several urinary 1M2P analyses carried out on a series of urine samples obtained from a human volunteer study. The within- and between-run precisions were generally about 10%, which corresponds to the usual injection variability. We observed that the differences between the results obtained with both methods are not clinically relevant in comparison to the current biological exposure index of urinary 1M2P. Accordingly, the headspace gas chromatography technique turned out to be a more sensitive, accurate, and simple method for the determination of urinary 1M2P.[Authors]
Resumo:
A gas chromatographic-mass spectrometric method is presented which allows the determination of chlorzoxazone and 6-hydroxychlorzoxazone after derivatization with the reagent N-tert.-butyldimethylsilyl-N-methyltrifluoroacetamide. No interference was observed from endogenous compounds following the extraction of plasma samples from six different human subjects. The standard curves were linear over a working range of 20 to 4000 ng/ml and of 20 to 1000 ng/ml for chlorzoxazone and 6-hydroxychlorzoxazone, respectively. Recoveries ranged from 65 to 97% for the two compounds and intra- and inter-day coefficients of variation were always less than 9%. The limit of quantitation of the method was found to be 5 ng/ml for the two compounds, hence allowing its use for single low dose pharmacokinetics.
Resumo:
The aim of our study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable for the routine determination of blood CO concentration in forensic toxicology laboratories. The main drawback of the GC/MS methods discussed in literature for CO measurement is the absence of a specific CO internal standard necessary for performing quantification. Even if stable isotope of CO is commercially available in the gaseous state, it is essential to develop a safer method to limit the manipulation of gaseous CO and to precisely control the injected amount of CO for spiking and calibration. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in a vial in situ, an internal labeled standard gas ((13)CO) formed by the reaction of labeled formic acid formic acid (H(13)COOH) with sulfuric acid. As sulfuric acid can also be employed to liberate the CO reagent from whole blood, the procedure allows for the liberation of CO simultaneously with the generation of (13)CO. This method allows for precise measurement of blood CO concentrations from a small amount of blood (10 μL). Finally, this method was applied to measure the CO concentration of intoxicated human blood samples from autopsies.
Resumo:
Introduction: Ethylglucuronide (EtG) is a direct and specific metabolite of ethanol. Its determination in hair is of increasing interest for detecting and monitoring alcohol abuse. The quantification of EtG in hair requires analytical methods showing highest sensitivity and specificity. We present a fully validated method based on gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS). The method was validated using French Society of Pharmaceutical Sciences and Techniques (SFSTP) guidelines which are based on the determination of the total measurement error and accuracy profiles. Methods: Washed and powdered hair is extracted in water using an ultrasonic incubation. After purification by Oasis MAX solid phase extraction, the derivatized EtG is detected and quantified by GC-NCI-MS/MS method in the selected reaction monitoring mode. The transitions m/z 347 / 163 and m/z 347 / 119 were used for the quantification and identification of EtG. Four quality controls (QC) prepared with hair samples taken post mortem from 2 subjects with a known history of alcoholism were used. A proficiency test with 7 participating laboratories was first run to validate the EtG concentration of each QC sample. Considering the results of this test, these samples were then used as internal controls for validation of the method. Results: The mean EtG concentrations measured in the 4 QC were 259.4, 130.4, 40.8, and 8.4 pg/mg hair. Method validation has shown linearity between 8.4 and 259.4 pg/mg hair (r2 > 0.999). The lower limit of quantification was set up at 8.4 pg/mg. Repeatability and intermediate precision were found less than 13.2% for all concentrations tested. Conclusion: The method proved to be suitable for routine analysis of EtG in hair. GC-NCI-MS/MS method was then successfully applied to the analysis of EtG in hair samples collected from different alcohol consumers.
Resumo:
We present a method for the analysis of urinary 16(5alpha)-androsten-3alpha-ol together with 5beta-pregnane-3alpha,20alpha-diol and four testosterone metabolites: androsterone (Andro), etiocholanolone (Etio), 5alpha-androstane-3alpha,17beta-diol (5alphaA), 5beta-androstane-3alpha,17beta-diol (5betaA) by means of gas chromatography/combustion/isotopic ratio mass spectrometry (GC/C/IRMS). The within-assay and between-assay precision S.D.s of the investigated steroids were lower than 0.3 and 0.6 per thousand, respectively. A comparative study on a population composed of 20 subjects has shown that the differences of the intra-individual delta(13)C-values for 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol are less than 0.9 per thousand. Thereafter, the method has been applied in the frame of an excretion study following oral ingestion of 50 mg DHEA initially and oral ingestion of 50mg pregnenolone 48 h later. Our findings show that administration of DHEA does not affect the isotopic ratio values of 16(5alpha)-androsten-3alpha-ol and 5beta-pregnane-3alpha,20alpha-diol, whereas the isotopic ratio values of 5beta-pregnane-3alpha,20alpha-diol vary by more 5 per thousand upon ingestion of pregnenolone. We have observed delta(13)C-value changes lower than 1 per thousand for 16(5alpha)-androsten-3alpha-ol, though pregnenolone is a precursor of the 16-ene steroids. In contrast to 5beta-pregnane-3alpha,20alpha-diol, the 16-ene steroid may be used as an endogenous reference compound when pregnenolone is administered.
Resumo:
The method of sample recovery for trace detection and identification of explosives plays a critical role in several criminal investigations. After bombing, there can be difficulties in sending big objects to a laboratory for analysis. Traces can also be searched for on large surfaces, on hands of suspects or on surfaces where the explosive was placed during preparatory phases (e.g. places where an IED was assembled, vehicles used for transportation, etc.). In this work, triacetone triperoxide (TATP) was synthesized from commercial precursors following reported methods. Several portions of about 6 mg of TATP were then spread on different surfaces (e.g. floors, tables, etc.) or used in handling tests. Three different swabbing systems were used: a commercial swab, pre-wetted with propan-2-ol (isopropanol) and water (7:3), dry paper swabs, and cotton swabs wetted with propan-2-ol. Paper and commercial swabs were also used to sample a metal plate, where a small charge of about 4 g of TATP was detonated. Swabs were sealed in small glass jars with screw caps and Parafilm® M and sent to the laboratory for analysis. Swabs were extracted and analysed several weeks later by gas chromatography/mass spectrometry. All the three systems gave positive results, but wetted swabs collected higher amounts of TATP. The developed procedure showed its suitability for use in real cases, allowing TATP detection in several simulations, including a situation in which people wash their hands after handling the explosive.