104 resultados para Class II, division 1 malocclusion
em Université de Lausanne, Switzerland
Resumo:
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Resumo:
RJ 2.2.5 is a human B cell line that has lost the capacity to express MHC class II genes. The human class II-positive phenotype is restored in somatic cell hybrids between RJ 2.2.5 and mouse spleen cells. By karyotype and molecular studies of an informative family of hybrids we have now shown that the reexpression of human class II gene products, as well as the maintenance of the mouse class II-positive phenotype, correlates with the presence of mouse chromosome 16. Thus, the existence on this mouse chromosome of a newly found locus, designated by us aIr-1, that determines a trans-acting activator function for class II gene expression, is established. Possible implications of this finding are discussed.
Resumo:
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.
Resumo:
Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.
Resumo:
Gene duplication and neofunctionalization are known to be important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family crucial to the vertebrate immune system. In birds, two MHC class II β (MHCIIβ) exon 3 lineages have been recently characterized, and two hypotheses for the evolutionary history of MHCIIβ lineages were proposed. These lineages could have arisen either by 1) an ancient duplication and subsequent divergence of one paralog or by 2) recent parallel duplications followed by functional convergence. Here, we compiled a data set consisting of 63 MHCIIβ exon 3 sequences from six avian orders to distinguish between these hypotheses and to understand the role of selection in the divergent evolution of the two avian MHCIIβ lineages. Based on phylogenetic reconstructions and simulations, we show that a unique duplication event preceding the major avian radiations gave rise to two ancestral MHCIIβ lineages that were each likely lost once later during avian evolution. Maximum likelihood estimation shows that following the ancestral duplication, positive selection drove a radical shift from basic to acidic amino acid composition of a protein domain facing the α-chain in the MHCII α β-heterodimer. Structural analyses of the MHCII α β-heterodimer highlight that three of these residues are potentially involved in direct interactions with the α-chain, suggesting that the shift following duplication may have been accompanied by coevolution of the interacting α- and β-chains. These results provide new insights into the long-term evolutionary relationships among avian MHC genes and open interesting perspectives for comparative and population genomic studies of avian MHC evolution.
Resumo:
OBJECTIVE: Absent or reverse end-diastolic flow (Doppler II/III) in umbilical artery is correlated with poor perinatal outcome, particularly in intrauterine growth restricted (IUGR) fetuses. The optimal timing of delivery is still controversial. We studied the short- and long-term morbidity and mortality among these children associated with our defined management. STUDY DESIGN: Sixty-nine IUGR fetuses with umbilical Doppler II/III were divided into three groups; Group 1, severe early IUGR, no therapeutic intervention (n = 7); Group 2, fetuses with pathological biophysical profile, immediate delivery (n = 35); Group 3, fetuses for which expectant management had been decided (n = 27). RESULTS: In Group 1, stillbirth was observed after a mean delay of 6.3 days. Group 2 delivered at an average of 31.6 weeks and two died in the neonatal period (6%). In Group 3 after a mean delay of 8 days, average gestational age at delivery was 31.7 weeks; two intra uterine and four perinatal deaths were observed (22%). Long-term follow-up revealed no sequelae in 25/31 (81%) and 15/18 (83%), and major handicap occurred in 1 (3%) and 2 patients (11%), respectively, for Groups 2 and 3. CONCLUSION: Fetal mortality was observed in 22% of this high risk group. After a mean period of follow-up of 5 years, 82% of infants showed no sequelae. According to our management, IUGR associated with umbilical Doppler II or III does not show any benefit from an expectant management in term of long-term morbidity.
Resumo:
Background In rheumatoid arthritis (RA), non-professional antigen presenting cells (APCs) such as fi broblast-like synoviocytes (FLS) can express MHC class II (MHCII) molecules and function as non-professional APCs in vitro.Objective To examine the regulation of MHCII expression in FLS and to investigate the role of FLS as non-professional APCs in collagen-induced arthritis (CIA). Methods Expression of MHCII, CIITA and Ciita isoforms pI, pIII and pIV was examined by RT-qPCR, immunohistochemistry and fl ow cytometry in human synovial tissues, arthritic mouse joints and human as well as mouse FLS. CIA was induced in mice knockout for the isoform IV of Ciita (pIV-/-), in pIV-/- mice transgenic for CIITA in the thymus (pIV-/- K14 CIITA) and in control littermates in the DBA/1 background by immunising with bovine collagen type II (CII) in complete Freund's adjuvant.Results HLA-DRA, total CIITA and CIITA pIII mRNA levels were signifi cantly increased in the synovial tissues from RA compared to osteoarthritis patients. Human FLS expressed surface MHCII via CIITA pIII and pIV, while MHCII expression in murine FLS was entirely mediated by pIV. pIV-/- mice lacked both inducible MHCII expression on non-professional APCs including FLS, and in the thymic cortex. The thymic defect in pIV-/- mice impaired CD4+ positive selection, thus protecting pIV-/- mice from CIA by preventing CD4+ T cells immune responses against CII and blocking the release of IFN-γ and IL-17 in ex vivo stimulated lymph node cells. The production of T dependent, arthritogenic anti-CII antibodies was also impaired in pIV-/- mice. A normal thymic expression of MHCII and CD4+ T cell repertoire was obtained in pIV-/- K14 CIITA Tg mice. Immune responses against CII were restored in pIV-/- K14 CIITA Tg mice, as well as the arthritis incidence and clinical severity despite the lack of MHCII expression by mouse FLS. At histology, infl ammation andneutrophils infi ltration scores were not reduced in pIV-/- K14 CIITA Tg mice, while the bone erosion score was signifi cantly lower than in controls.Conclusion Over expression of MHCII is tightly correlated with CIITA pIII in the arthritic human synovium. MHCII is induced via CIITA pIII and pIV in human FLS. In the mouse, MHCII expression in the thymic cortex and in FLS is strictly dependent upon Ciita pIV. The lack of Ciita pIV in the periphery of pIV-/- K14 CIITA Tg mice lowered the bone erosion score but did not signifi cantly protect from infl ammation and autoimmune responses in CIA.
Resumo:
This study aimed to compare two different maximal incremental tests with different time durations [a maximal incremental ramp test with a short time duration (8-12 min) (STest) and a maximal incremental test with a longer time duration (20-25 min) (LTest)] to investigate whether an LTest accurately assesses aerobic fitness in class II and III obese men. Twenty obese men (BMI≥35 kg.m-2) without secondary pathologies (mean±SE; 36.7±1.9 yr; 41.8±0.7 kg*m-2) completed an STest (warm-up: 40 W; increment: 20 W*min-1) and an LTest [warm-up: 20% of the peak power output (PPO) reached during the STest; increment: 10% PPO every 5 min until 70% PPO was reached or until the respiratory exchange ratio reached 1.0, followed by 15 W.min-1 until exhaustion] on a cycle-ergometer to assess the peak oxygen uptake [Formula: see text] and peak heart rate (HRpeak) of each test. There were no significant differences in [Formula: see text] (STest: 3.1±0.1 L*min-1; LTest: 3.0±0.1 L*min-1) and HRpeak (STest: 174±4 bpm; LTest: 173±4 bpm) between the two tests. Bland-Altman plot analyses showed good agreement and Pearson product-moment and intra-class correlation coefficients showed a strong correlation between [Formula: see text] (r=0.81 for both; p≤0.001) and HRpeak (r=0.95 for both; p≤0.001) during both tests. [Formula: see text] and HRpeak assessments were not compromised by test duration in class II and III obese men. Therefore, we suggest that the LTest is a feasible test that accurately assesses aerobic fitness and may allow for the exercise intensity prescription and individualization that will lead to improved therapeutic approaches in treating obesity and severe obesity.
Resumo:
Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4(+) T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4(+) T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+) T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+) T cells and forkhead box P3 (FoxP3)(+) regulatory T (Treg) cells. IFN-γ produced mainly by CD4(+) T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.
Resumo:
Circulating monocytes, as dendritic cell and macrophage precursors, exhibit several functions usually associated with antigen-presenting cells, such as phagocytosis and presence of endosomal/lysosomal degradative compartments particularly enriched in Lamp-1, MHC class II molecules, and other proteins related to antigen processing and MHC class II loading [MHC class II compartments (MIICs)]. Ultrastructural analysis of these organelles indicates that, differently from the multivesicular bodies present in dendritic cells, in monocytes the MIICs are characterized by a single perimetral membrane surrounding an electron-dense core. Analysis of their content reveals enrichment in myeloperoxidase, an enzyme classically associated with azurophilic granules in granulocytes and mast cell secretory lysosomes. Elevation in intracellular free calcium levels in monocytes induced secretion of beta-hexosaminidase, cathepsins, and myeloperoxidase in the extracellular milieu; surface up-regulation of MHC class II molecules; and appearance of lysosomal resident proteins. The Ca(2+)-regulated surface transport mechanism of MHC class II molecules observed in monocytes is different from the tubulovesicular organization of the multivesicular bodies previously reported in dendritic cells and macrophages. Hence, in monocytes, MHC class II-enriched organelles combine degradative functions typical of lysosomes and regulated secretion typical of secretory lysosomes. More important, Ca(2+)-mediated up-regulation of surface MHC class II molecules is accompanied by extracellular release of lysosomal resident enzymes.
Resumo:
It is well established that interactions between CD4(+) T cells and major histocompatibility complex class II (MHCII) positive antigen-presenting cells (APCs) of hematopoietic origin play key roles in both the maintenance of tolerance and the initiation and development of autoimmune and inflammatory disorders. In sharp contrast, despite nearly three decades of intensive research, the functional relevance of MHCII expression by non-hematopoietic tissue-resident cells has remained obscure. The widespread assumption that MHCII expression by non-hematopoietic APCs has an impact on autoimmune and inflammatory diseases has in most instances neither been confirmed nor excluded by indisputable in vivo data. Here we review and put into perspective conflicting in vitro and in vivo results on the putative impact of MHCII expression by non-hematopoietic APCs-in both target organs and secondary lymphoid tissues-on the initiation and development of representative autoimmune and inflammatory disorders. Emphasis will be placed on the lacunar status of our knowledge in this field. We also discuss new mouse models-developed on the basis of our understanding of the molecular mechanisms that regulate MHCII expression-that constitute valuable tools for filling the severe gaps in our knowledge on the functions of non-hematopoietic APCs in inflammatory conditions.
Resumo:
Purpose: More than five hundred million direct dental restorations are placed each year worldwide. In about 55% of the cases, resin composites or compomers are used, and in 45% amalgam. The longevity of posterior resin restorations is well documented. However, data on resin composites that are placed without enamel/dentin conditioning and resin composites placed with self-etching adhesive systems are missing. Material and Methods: The database SCOPUS was searched for clinical trials on posterior resin composites without restricting the search to the year of publication. The inclusion criteria were: (1) prospective clinical trial with at least 2 years of observation; (2) minimum number of restorations at last recall = 20; (3) report on dropout rate; (4) report of operative technique and materials used; (5) utilization of Ryge or modified Ryge evaluation criteria. For amalgam, only those studies were included that directly compared composite resin restorations with amalgam. For the statistical analysis, a linear mixed model was used with random effects to account for the heterogeneity between the studies. P-values under 0.05 were considered significant. Results: Of the 373 clinical trials, 59 studies met the inclusion criteria. In 70% of the studies, Class II and Class I restorations had been placed. The overall success rate of composite resin restorations was about 90% after 10 years, which was not different from that of amalgam. Restorations with compomers had a significantly lower longevity. The main reason for replacement were bulk fractures and caries adjacent to restorations. Both of these incidents were infrequent in most studies and accounted only for about 6% of all replaced restorations after 10 years. Restorations with macrofilled composites and compomer suffered significantly more loss of anatomical form than restorations with other types of material. Restorations that were placed without enamel acid etching and a dentin bonding agent showed significantly more marginal staining and detectable margins compared to those restorations placed using the enamel-etch or etch-and-rinse technique; restorations with self-etching systems were between the other groups. Restorations with compomer suffered significantly more chippings (repairable fracture) than restorations with other materials, which did not statistically differ among each other. Restorations that were placed with a rubber-dam showed significantly fewer material fractures that needed replacement, and this also had a significant effect on the overall longevity. Conclusion: Restorations with hybrid and microfilled composites that were placed with the enamel-etching technique and rubber-dam showed the best overall performance; the longevity of these restorations was similar to amalgam restorations. Compomer restorations, restorations placed with macrofilled composites, and resin restorations with no-etching or self-etching adhesives demonstrated significant shortcomings and shorter longevity.
Resumo:
CIITA is a master regulatory factor for the expression of MHC class II (MHC-II) and accessory genes involved in Ag presentation. It has recently been suggested that CIITA also regulates numerous other genes having diverse functions within and outside the immune system. To determine whether these genes are indeed relevant targets of CIITA in vivo, we studied their expression in CIITA-transgenic and CIITA-deficient mice. In contrast to the decisive control of MHC-II and related genes by CIITA, nine putative non-MHC target genes (Eif3s2, Kpna6, Tap1, Yars, Col1a2, Ctse, Ptprr, Tnfsf6 and Plxna1) were found to be CIITA independent in all cell types examined. Two other target genes, encoding IL-4 and IFN-gamma, were indeed found to be up- and down-regulated, respectively, in CIITA-transgenic CD4(+) T cells. However, there was no correlation between MHC-II expression and this Th2 bias at the level of individual transgenic T cells, indicating an indirect control by CIITA. These results show that MHC-II-restricted Ag presentation, and its indirect influences on T cells, remains the only pathway under direct control by CIITA in vivo. They also imply that precisely regulated MHC-II expression is essential for maintaining a proper Th1-Th2 balance.