11 resultados para CYSTATIN-C
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: A sensitive, feasible and reproducible marker for renal function is necessary to evaluate the clinical efficacy of enzyme replacement therapy (ERT) in Fabry nephropathy. Serum creatinine has some limitations and cystatin C has been proposed, in other nephropathies, as a useful marker of renal function. The use of cystatin C as a marker of glomerular filtration rate (GFR) was investigated in Fabry patients receiving ERT. METHODS: Renal function was evaluated with serum creatinine, serum cystatin C and estimated GFR (through Modification of Diet in Renal Disease [MDRD], Cockcroft-Gault [C&G] and Hoek formulae) in 21 Fabry patients receiving ERT with agalsidase alfa for 3 years and in 13 Fabry patients receiving agalsidase alfa for 4 years. RESULTS: During years of ERT while serum creatinine remained stable, cystatin C values showed a significant, increasing trend right from the first year of ERT. CONCLUSIONS: In Fabry disease, cystatin C is a sensitive and reliable marker of renal function, and it should be taken into account when evaluating GFR trends during ERT.
Resumo:
AIM: Inulin clearance (Cin) is the gold standard for assessing glomerular filtration rate (GFR). Other methods are based on the plasma creatinine concentration (Pcreat), creatinine clearance (Ccreat), the Haycock-Schwartz formula and the plasma concentration of cystatin C (PcysC), a 13 kDa basic protein produced at a constant rate by all nucleated cells. The present prospective study was thus designed to evaluate the reliability of PcysC as a marker of GFR in comparison with that of Pcreat, Ccreat and the Haycock-Schwartz formula, using Cin as the gold standard. METHODS: Ninety-nine children (51 m/48 f), with a median age of 8.3 y (1.0-17.9) were studied. Using a cut-off for Cin of 100 ml/min per 1.73 m2, 54 children (54.5%) had impaired GFR. Those with normal GFR were comparable for age, height, weight and body mass index. RESULTS: Logistic regression, ROC analysis and linear regression all showed that Ccreat was the best parameter to discriminate between impaired and normal GFR, followed by the Haycock-Schwartz formula, PcysC, and finally Pcreat, each one being significantly more predictive than the next. CONCLUSION: GFR is better assessed by the Haycock-Schwartz formula than by PcysC or Pcreat alone. It is therefore concluded that when urine collection is not possible, simply measuring the child's Pcreat and height is the best, easiest and cheapest way to assess GFR.
Resumo:
BACKGROUND AND OBJECTIVES: The estimated GFR (eGFR) is important in clinical practice. To find the best formula for eGFR, this study assessed the best model of correlation between sinistrin clearance (iGFR) and the solely or combined cystatin C (CysC)- and serum creatinine (SCreat)-derived models. It also evaluated the accuracy of the combined Schwartz formula across all GFR levels. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Two hundred thirty-eight iGFRs performed between January 2012 and April 2013 for 238 children were analyzed. Regression techniques were used to fit the different equations used for eGFR (i.e., logarithmic, inverse, linear, and quadratic). The performance of each model was evaluated using the Cohen κ correlation coefficient and the percentage reaching 30% accuracy was calculated. RESULTS: The best model of correlation between iGFRs and CysC is linear; however, it presents a low κ coefficient (0.24) and is far below the Kidney Disease Outcomes Quality Initiative targets to be validated, with only 84% of eGFRs reaching accuracy of 30%. SCreat and iGFRs showed the best correlation in a fitted quadratic model with a κ coefficient of 0.53 and 93% accuracy. Adding CysC significantly (P<0.001) increased the κ coefficient to 0.56 and the quadratic model accuracy to 97%. Therefore, a combined SCreat and CysC quadratic formula was derived and internally validated using the cross-validation technique. This quadratic formula significantly outperformed the combined Schwartz formula, which was biased for an iGFR≥91 ml/min per 1.73 m(2). CONCLUSIONS: This study allowed deriving a new combined SCreat and CysC quadratic formula that could replace the combined Schwartz formula, which is accurate only for children with moderate chronic kidney disease.
Resumo:
Background: The combined serum creatinine (SCreat) and cystatin C (CysC) CKD-EPI formula constitutes a new advance for glomerular filtration rate (GFR) estimation in adults. Using inulin clearances (iGFRs), the revised SCreat and the combined Schwartz formulas, this study aims to evaluate the applicability of the combined CKD-EPI formula in children. Method: 201 iGFRs for 201 children were analyzed and divided by chronic kidney disease (CKD) stages (iGFRs ≥90 ml/min/1.73 m(2), 90 > iGFRs > 60, and iGFRs ≤59), and by age groups (<10, 10-15, and >15 years). Medians with 95% confidence intervals of bias, precision, and accuracies within 30% of the iGFRs, for all three formulas, were compared using the Wilcoxon signed-rank test. Results: For the entire cohort and for all CKD and age groups, medians of bias for the CKD-EPI formula were significantly higher (p < 0.001) and precision was significantly lower than the solely SCreat and the combined SCreat and CysC Schwartz formulas. We also found that using the CKD-EPI formula, bias decreased and accuracy increased while the child age group increased, with a better formula performance above 15 years of age. However, the CKD-EPI formula accuracy is 58% compared to 93 and 92% for the SCreat and combined Schwartz formulas in this adolescent group. Conclusions: The performance of the combined CKD-EPI formula improves in adolescence compared with younger ages. Nevertheless, the CKD-EPI formula performs more poorly than the SCreat and the combined Schwartz formula in pediatric population. © 2013 S. Karger AG, Basel.
Resumo:
Cystatin C (CstC) is a cysteine protease inhibitor of major clinical importance. Low concentration of serum CstC is linked to atherosclerosis. CstC can prevent formation of amyloid β associated with Alzheimer's disease and can itself form toxic aggregates. CstC regulates NO secretion by macrophages and is a TGF-β antagonist. Finally, the serum concentration of CstC is an indicator of kidney function. Yet, little is known about the regulation of CstC expression in vivo. In this study, we demonstrate that the transcription factor IFN regulatory factor 8 (IRF-8) is critical for CstC expression in primary dendritic cells. Only those cells with IRF-8 bound to the CstC gene promoter expressed high levels of the inhibitor. Secretion of IL-10 in response to inflammatory stimuli downregulated IRF-8 expression and consequently CstC synthesis in vivo. Furthermore, the serum concentration of CstC decreased in an IL-10-dependent manner in mice treated with the TLR9 agonist CpG. CstC synthesis is therefore more tightly regulated than hitherto recognized. The mechanisms involved in this regulation might be targeted to alter CstC production, with potential therapeutic value. Our results also indicate that caution should be exerted when using the concentration of serum CstC as an indicator of kidney function in conditions in which inflammation may alter CstC production.
Resumo:
BACKGROUND: High-sensitivity C-reactive protein (hs-CRP) is associated with several cardiovascular risk factors (CVRF) and with renal function markers. However, these associations have not been examined in populations in the African region. We analyzed the distribution of hs-CRP and the relationship with a broad set of CVRF, renal markers and carotid intima-media thickness (IMT), in the Seychelles (African region). METHODS: We conducted a survey in the population aged 25-64years (n=1255, participation rate: 80.2%). Analyses were restricted to persons of predominantly African descent (n=1011). RESULTS: Mean and median hs-CRP serum concentrations (mg/l) were 3.1 (SD 7.6) and 1.4 (IQR 0.7-2.9) in men and 4.5 (SD 6.7) and 2.2 (IQR 1.0-5.4) in women (p<0.001 for difference between men and women). hs-CRP was significantly associated with several conventional CVRF, and particularly strongly with markers of adiposity. With regards to renal markers, hs-CRP was strongly associated with cystatin C and with microalbuminuria but not with creatinine. hs-CRP was not associated with IMT. CONCLUSIONS: Serum concentration of hs-CRP was significantly associated with sex, several CVRF and selected renal function markers, which extends similar findings in Europe and in North America to a population in the African region. These findings can contribute to guide recommendations for the use of hs-CRP in clinical practice in the region.
Resumo:
QUESTIONS UNDER STUDY AND PRINCIPLES: Estimating glomerular filtration rate (GFR) in hospitalised patients with chronic kidney disease (CKD) is important for drug prescription but it remains a difficult task. The purpose of this study was to investigate the reliability of selected algorithms based on serum creatinine, cystatin C and beta-trace protein to estimate GFR and the potential added advantage of measuring muscle mass by bioimpedance. In a prospective unselected group of patients hospitalised in a general internal medicine ward with CKD, GFR was evaluated using inulin clearance as the gold standard and the algorithms of Cockcroft, MDRD, Larsson (cystatin C), White (beta-trace) and MacDonald (creatinine and muscle mass by bioimpedance). 69 patients were included in the study. Median age (interquartile range) was 80 years (73-83); weight 74.7 kg (67.0-85.6), appendicular lean mass 19.1 kg (14.9-22.3), serum creatinine 126 μmol/l (100-149), cystatin C 1.45 mg/l (1.19-1.90), beta-trace protein 1.17 mg/l (0.99-1.53) and GFR measured by inulin 30.9 ml/min (22.0-43.3). The errors in the estimation of GFR and the area under the ROC curves (95% confidence interval) relative to inulin were respectively: Cockcroft 14.3 ml/min (5.55-23.2) and 0.68 (0.55-0.81), MDRD 16.3 ml/min (6.4-27.5) and 0.76 (0.64-0.87), Larsson 12.8 ml/min (4.50-25.3) and 0.82 (0.72-0.92), White 17.6 ml/min (11.5-31.5) and 0.75 (0.63-0.87), MacDonald 32.2 ml/min (13.9-45.4) and 0.65 (0.52-0.78). Currently used algorithms overestimate GFR in hospitalised patients with CKD. As a consequence eGFR targeted prescriptions of renal-cleared drugs, might expose patients to overdosing. The best results were obtained with the Larsson algorithm. The determination of muscle mass by bioimpedance did not provide significant contributions.
Resumo:
Using genome-wide association, we identify common variants at 2p12-p13, 6q26, 17q23 and 19q13 associated with serum creatinine, a marker of kidney function (P = 10(-10) to 10(-15)). Of these, rs10206899 (near NAT8, 2p12-p13) and rs4805834 (near SLC7A9, 19q13) were also associated with chronic kidney disease (P = 5.0 x 10(-5) and P = 3.6 x 10(-4), respectively). Our findings provide insight into metabolic, solute and drug-transport pathways underlying susceptibility to chronic kidney disease.
Resumo:
The assessment of glomerular filtration rate (GFR) is critical for the diagnosis and management of renal diseases in pediatric nephrology. Ideally, it requires the measurement of the renal clearance of a filtration marker. Inulin, an exogenous marker, is the only compound the excretion of which occurs exclusively by glomerular filtration, with no tubular handling. Therefore, inulin clearance provides the most accurate method to measure GFR and is considered as the "gold standard", at all ages including very premature neonates. However, inulin dearance is cumbersome and alternative methods are used in clinical practice. If urine is available, endogenous creatinine clearance is the most reliable method. When urine collection is difficult to obtain, GFR can be estimated by the plasma concentration of endogenous markers mainly eliminated by glomerular filtration, such as creatinine, or the more recently described cystatin C and beta 2-microglobulin. When the endogenous production of these markers is constant, their plasma concentration reflects glomerular filtration; it increases with decreasing renal function. However, in pediatric patients creatinine production depends on muscle mass, which significantly increases with linear growth, as well as age and gender. Mathematical formulas taking these parameters into account have thus been developed. Among these, the so-called "Schwartz formula" is often used and is a reliable estimate of GFR in children. Finally, radionuclide renal scans can be used to evaluate the separate glomerular function of each kidney.
Resumo:
Estimer la filtration glomérulaire chez les personnes âgées, tout en tenant compte de la difficulté supplémentaire d'évaluer leur masse musculaire, est difficile et particulièrement important pour la prescription de médicaments. Le taux plasmatique de la creatinine dépend à la fois de la fraction d'élimination rénale et extra-rénale et de la masse musculaire. Actuellement, pour estimer là filtration glomérulaire différentes formules sont utilisées, qui se fondent principalement sur la valeur de la créatinine. Néanmoins, en raison de la fraction éliminée par les voies tubulaires et intestinales la clairance de la créatinine surestime généralement le taux de filtration glomérulaire (GFR). Le but de cette étude est de vérifier la fiabilité de certains marqueurs et algorithmes de la fonction rénale actuellement utilisés et d'évaluer l'avantage additionnel de prendre en considération la masse musculaire mesurée par la bio-impédance dans une population âgée (> 70 ans) et avec une fonction rénale chronique compromise basée sur MDRD eGFR (CKD stades lll-IV). Dans cette étude, nous comparons 5 équations développées pour estimer la fonction rénale et basées respectivement sur la créatinine sérique (Cockcroft et MDRD), la cystatine C (Larsson), la créatinine combinée à la bêta-trace protéine (White), et la créatinine ajustée à la masse musculaire obtenue par analyse de la bio-impédance (MacDonald). La bio-impédance est une méthode couramment utilisée pour estimer la composition corporelle basée sur l'étude des propriétés électriques passives et de la géométrie des tissus biologiques. Cela permet d'estimer les volumes relatifs des différents tissus ou des fluides dans le corps, comme par exemple l'eau corporelle totale, la masse musculaire (=masse maigre) et la masse grasse corporelle. Nous avons évalué, dans une population âgée d'un service interne, et en utilisant la clairance de l'inuline (single shot) comme le « gold standard », les algorithmes de Cockcroft (GFR CKC), MDRD, Larsson (cystatine C, GFR CYS), White (beta trace protein, GFR BTP) et Macdonald (GFR = ALM, la masse musculaire par bio-impédance. Les résultats ont montré que le GFR (mean ± SD) mesurée avec l'inuline et calculée avec les algorithmes étaient respectivement de : 34.9±20 ml/min pour l'inuline, 46.7±18.5 ml/min pour CKC, 47.2±23 ml/min pour CYS, 54.4±18.2ml/min pour BTP, 49±15.9 ml/min pour MDRD et 32.9±27.2ml/min pour ALM. Les courbes ROC comparant la sensibilité et la spécificité, l'aire sous la courbe (AUC) et l'intervalle de confiance 95% étaient respectivement de : CKC 0 68 (055-0 81) MDRD 0.76 (0.64-0.87), Cystatin C 0.82 (0.72-0.92), BTP 0.75 (0.63-0.87), ALM 0.65 (0.52-0.78). ' En conclusion, les algorithmes comparés dans cette étude surestiment la GFR dans la population agee et hospitalisée, avec des polymorbidités et une classe CKD lll-IV. L'utilisation de l'impédance bioelectrique pour réduire l'erreur de l'estimation du GFR basé sur la créatinine n'a fourni aucune contribution significative, au contraire, elle a montré de moins bons résultats en comparaison aux autres equations. En fait dans cette étude 75% des patients ont changé leur classification CKD avec MacDonald (créatinine et masse musculaire), contre 49% avec CYS (cystatine C), 56% avec MDRD,52% avec Cockcroft et 65% avec BTP. Les meilleurs résultats ont été obtenus avec Larsson (CYS C) et la formule de Cockcroft.