45 resultados para CONDUCTIVE POLYIMIDE ELECTROLYTES
em Université de Lausanne, Switzerland
Resumo:
Quantification is a major problem when using histology to study the influence of ecological factors on tree structure. This paper presents a method to prepare and to analyse transverse sections of cambial zone and of conductive phloem in bark samples. The following paper (II) presents the automated measurement procedure. Part I here describes and discusses the preparation method, and the influence of tree age on the observed structure. Highly contrasted images of samples extracted at breast height during dormancy were analysed with an automatic image analyser. Between three young (38 years) and three old (147 years) trees, age-related differences were identified by size and shape parameters, at both cell and tissue levels. In the cambial zone, older trees had larger and more rectangular fusiform initials. In the phloem, sieve tubes were also larger, but their shape did not change and the area for sap conduction was similar in both categories. Nevertheless, alterations were limited, and demanded statistical analysis to be identified and ascertained. The physiological implications of the structural changes are discussed.
Resumo:
BACKGROUND: A concentrate for bicarbonate haemodialysis acidified with citrate instead of acetate has been marketed in recent years. The small amount of citrate used (one-fifth of the concentration adopted in regional anticoagulation) protects against intradialyser clotting while minimally affecting the calcium concentration. The aim of this study was to compare the impact of citrate- and acetate-based dialysates on systemic haemodynamics, coagulation, acid-base status, calcium balance and dialysis efficiency. METHODS: In 25 patients who underwent a total of 375 dialysis sessions, an acetate dialysate (A) was compared with a citrate dialysate with (C+) or without (C) calcium supplementation (0.25 mmol/L) in a randomised single-blind cross-over study. Systemic haemodynamics were evaluated using pulse-wave analysis. Coagulation, acid-base status, calcium balance and dialysis efficiency were assessed using standard biochemical markers. RESULTS: Patients receiving the citrate dialysate had significantly lower systolic blood pressure (BP) (-4.3 mmHg, p < 0.01) and peripheral resistances (PR) (-51 dyne.sec.cm-5, p < 0.001) while stroke volume was not increased. In hypertensive patients there was a substantial reduction in BP (-7.8 mmHg, p < 0.01). With the C+ dialysate the BP gap was less pronounced but the reduction in PR was even greater (-226 dyne.sec.cm-5, p < 0.001). Analyses of the fluctuations in PR and of subjective tolerance suggested improved haemodynamic stability with the citrate dialysate. Furthermore, an increase in pre-dialysis bicarbonate and a decrease in pre-dialysis BUN, post-dialysis phosphate and ionised calcium were noted. Systemic coagulation activation was not influenced by citrate. CONCLUSION: The positive impact on dialysis efficiency, acid-base status and haemodynamics, as well as the subjective tolerance, together indicate that citrate dialysate can significantly contribute to improving haemodialysis in selected patients.
Resumo:
This paper describes the development of a polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Finite element analysis was used to investigate critical parameters, impacting on the device design and sensing characteristics. The sensing element of the device was fabricated by polyimide-based micromachining on a flexible membrane, using embedded thin-film metallic wires as piezoresistive elements. A chamber containing this flexible membrane was sealed using an adapted SU-8 bonding technique. The device was evaluated experimentally and its overall performance compared with a commercial silicon-based pressure sensor. Furthermore, the device use was demonstrated by measuring blood pressure and heart rate in vivo.
Resumo:
Many basic physiological functions exhibit circadian rhythmicity. These functional rhythms are driven, in part, by the circadian clock, an ubiquitous molecular mechanism allowing cells and tissues to anticipate regular environmental events and to prepare for them. This mechanism has been shown to play a particularly important role in maintaining stability (homeostasis) of internal conditions. Because the homeostatic equilibrium is continuously challenged by environmental changes, the role of the circadian clock is thought to consist in the anticipative adjustment of homeostatic pathways in relation with the 24h environmental cycle. The kidney is the principal organ responsible for the regulation of the composition and volume of extracellular fluids (ECF). Several major parameters of kidney function, including renal plasma flow (RPF), glomerular filtration rate (GFR) and tubular reabsorption and secretion have been shown to exhibit strong circadian oscillations. Recent evidence suggest that the circadian clock can be involved in generation of these rhythms through external circadian time cues (e.g. humoral factors, activity and body temperature rhythms) or, trough the intrinsic renal circadian clock. Here, we discuss the role of renal circadian mechanisms in maintaining homeostasis of water and three major ions, namely, Na(+), K(+) and Cl(-).
Resumo:
To assess the variability of the response to exogenous atrial natriuretic peptide (ANP), it was infused at the rate of 1 microgram/min for 2 h in 6 salt-loaded normal volunteers under controlled conditions on 2 occasions at an interval of 1 week. The effect on solute excretion and the haemodynamic and endocrine actions were highly reproducible. The constant ANP infusion caused a delayed and prolonged excretion of sodium, chloride and calcium, no change in potassium or phosphate excretion or in glomerular filtration rate but a marked decrease in renal plasma flow. Blood pressure, heart rate and the plasma levels of angiotensin II, aldosterone, arginine vasopressin and plasma renin activity were unaltered. The effect of a 2-h infusion of ANP 0.5 microgram/min or its vehicle on apparent hepatic blood flow (HBF) was also studied in 14 normal volunteers by measuring the indocyanine green clearance. A 21% decrease in HBF was observed in subjects who received the ANP infusion (p less than 0.01 vs vehicle). Thus, ANP infused at a dose that did not lower blood pressure decreased both renal and liver blood flow in normotensive volunteers. The renal and endocrine responses to ANP were reproducible over a 1-week interval.
Resumo:
A 98-year-old woman was referred to our hospital because of myoclonia. The concentration of calcium and vitamin D in the serum was low. In this context, we concluded of neuromuscular irritability secondary to hypocalcaemia. The symptoms disappeared after a treatment of intravenous calcium. This case shows how important it is to investigate electrolytes in case of neuromuscular irritability symptoms in elderly people.
Resumo:
The coupling of aldosterone with renin is altered during acute hypoxemia. We measured the various components of the renin-angiotensin system and the plasma levels of immunoreactive atrial natriuretic factor (iANF) during room air and hypoxic gas-mixture breathing before and after administration of metoclopramide, a competitive antagonist of dopamine. Seven resting volunteers were studied 1 wk apart under room air and hypoxic conditions (inspired O2 fraction 0.12). During hypoxemia, the release of aldosterone induced by metoclopramide was significantly smaller. This change was associated with a slight increase in iANF and with a decrease in plasma angiotensin II levels, without any change in immunoreactive blood angiotensin I concentrations. Plasma electrolytes and blood acid-base status did not show relevant changes, nor did blood pressure and heart rate. We conclude that the decreased aldosterone concentrations seen under hypoxemia are related to decreased angiotensin II levels. Other influences, such as elevated ANF, may also mediate this effect.
Resumo:
The endothelin receptor antagonist avosentan may cause fluid overload at doses of 25 and 50 mg, but the actual mechanisms of this effect are unclear. We conducted a placebo-controlled study in 23 healthy subjects to assess the renal effects of avosentan and the dose dependency of these effects. Oral avosentan was administered once daily for 8 days at doses of 0.5, 1.5, 5, and 50 mg. The drug induced a dose-dependent median increase in body weight, most pronounced at 50 mg (0.8 kg on day 8). Avosentan did not affect renal hemodynamics or plasma electrolytes. A dose-dependent median reduction in the fractional renal excretion of sodium was found (up to 8.7% at avosentan 50 mg); this reduction was paralleled by a dose-related increase in proximal sodium reabsorption. It is suggested that avosentan dose-dependently induces sodium retention by the kidney, mainly through proximal tubular effects. The potential clinical benefits of avosentan should therefore be investigated at doses of <or= 5 mg.
Resumo:
OBJECTIVE: To investigate the endocrine and renal effects of the dual inhibitor of angiotensin converting enzyme and neutral endopeptidase, MDL 100,240. DESIGN: A randomized, placebo-controlled, crossover study was performed in 12 healthy volunteers. METHODS: MDL 100,240 was administered intravenously over 20 min at single doses of 6.25 and 25 mg in subjects with a sodium intake of 280 (n = 6) or 80 (n = 6) mmol/day. Measurements were taken of supine and standing blood pressure, plasma angiotensin converting enzyme activity, angiotensin II, atrial natriuretic peptide, urinary atrial natriuretic peptide and cyclic GMP excretion, effective renal plasma flow and the glomerular filtration rate as p-aminohippurate and inulin clearances, electrolytes and segmental tubular function by endogenous lithium clearance. RESULTS: Supine systolic blood pressure was consistently decreased by MDL 100,240, particularly after the high dose and during the low-salt intake. Diastolic blood pressure and heart rate did not change. Plasma angiotensin converting enzyme activity decreased rapidly and dose-dependently. In both the high- and the low-salt treatment groups, plasma angiotensin II levels fell and renin activity rose accordingly, while plasma atrial natriuretic peptide levels remained unchanged. In contrast, urinary atrial natriuretic peptide excretion increased dose-dependently under both diets, as did urinary cyclic GMP excretion. Effective renal plasma flow and the glomerular filtration rate did not change. The urinary flow rate increased markedly during the first 2 h following administration of either dose of MDL 100,240 (P < 0.001) and, similarly, sodium excretion tended to increase from 0 to 4 h after the dose (P = 0.07). Potassium excretion remained stable. Proximal and distal fractional sodium reabsorption were not significantly altered by the treatment. Uric acid excretion was increased. The safety and clinical tolerance of MDL 100,240 were good. CONCLUSIONS: The increased fall in blood pressure in normal volunteers together with the preservation of renal hemodynamics and the increased urinary volume, atrial natriuretic peptide and cyclic GMP excretion distinguish MDL 100,240 as a double-enzyme inhibitor from inhibitors of the angiotensin converting enzyme alone. The differences appear to be due, at least in part, to increased renal exposure to atrial natriuretic peptide following neutral endopeptidase blockade.
Resumo:
Urinary excretion of water and all major electrolytes exhibit robust circadian oscillations. The 24-h periodicity has been well documented for several important determinants of urine formation, including renal blood flow, glomerular filtration, tubular reabsorption, and tubular secretion. Disturbance of the renal circadian rhythms is increasingly recognized as a risk factor for hypertension, polyuria, and other diseases and may contribute to renal fibrosis. The origin of these rhythms has been attributed to the reactive response of the kidney to circadian changes in volume and/or in the composition of extracellular fluids that are entrained by rest/activity and feeding/fasting cycles. However, numerous studies have shown that most of the renal excretory rhythms persist for long periods of time, even in the absence of periodic environmental cues. These observations led to the hypothesis of the existence of a self-sustained mechanism, enabling the kidney to anticipate various predictable circadian challenges to homeostasis. The molecular basis of this mechanism remained unknown until the recent discovery of the mammalian circadian clock made of a system of autoregulatory transcriptional/translational feedback loops, which have been found in all tissues studied, including the kidney. Here, we present a review of the growing evidence showing the involvement of the molecular clock in the generation of renal excretory rhythms.
Resumo:
BACKGROUND: During hibernation the kidney is in a hypothermic condition where renal blood flow is minimal and urine production is much reduced. Periodical arousal from hibernation is associated with kidney reperfusion at increasing body temperature, and restored urine production rate. METHODS: To assess the degree of structural preservation during such extreme conditions, the kidney cortex was investigated by means of electron microscopy in the dormouse Muscardinus avellanarius during winter hibernation, arousal from hibernation and the summer active period. RESULTS: Results show that the fine structure of the kidney cortex is well preserved during hibernation. In the renal corpuscle, a sign of slight lesion was the focal presence of oedematous endothelial cells and/or podocytes. Proximal convoluted tubule cells showed fully preserved ultrastructure and polarity, and hypertrophic apical endocytic apparatus. Structural changes were associated with increased plasma electrolytes, creatinine and urea nitrogen, and proteinuria. During the process of arousal the fine structure of the kidney cortex was also well maintained. CONCLUSION: These results demonstrate that dormice are able to fully preserve kidney cortex structure under extreme conditions resembling e.g. severe ischaemia or hypothermic organ storage for transplantation, and reperfusion. Elucidation of the mechanisms involved in such a natural model of organ preservation could be relevant to human medicine.
Resumo:
OBJECTIVES: Although endogenous nitric oxide (NO) is an excitatory mediator in the central nervous system, inhaled NO is not considered to cause neurologic side effects because of its short half-life. This study was motivated by a recent case report about neurologic symptoms and our own observation of severe electroencephalogram (EEG) abnormalities during NO inhalation. DESIGN: Blind, retrospective analyses of EEGs which were registered before, during, and after NO inhalation. EEG was classified in a 5-point rating system by an independent electroencephalographer who was blinded to the patients' clinical histories. Comparisons were made with the previous evaluation documented at recording. Other EEG-influencing parameters such as oxygen saturation, hemodynamics, electrolytes, and pH were evaluated. SETTING: Pediatric intensive care unit of a tertiary care university children's hospital. PATIENTS: Eleven ventilated, long-term paralyzed, sedated children (1 mo to 14 yrs) who had EEG or clinical assessment before NO treatment and EEG during NO inhalation. They were divided into two groups according to the NO-indication (e.g., congenital heart defect, acute respiratory distress syndrome). MEASUREMENTS AND MAIN RESULTS: All 11 patients had an abnormal EEG during NO inhalation. EEG-controls without NO showed remarkable improvement. EEG abnormalities were background slowing, low voltage, suppression burst (n = 2), and sharp waves (n = 2) independent of patients' age, NO-indication, and other EEG-influencing parameters. CONCLUSIONS: These preliminary data suggest the occurrence of EEG-abnormalities after application of inhaled NO in critically ill children. We found no correlation with other potential EEG-influencing parameters, although clinical state, medication, or hypoxemia might contribute. Comprehensive, prospective, clinical assessment regarding a causal relationship between NO-inhalation and EEG-abnormalities and their clinical importance is needed.
Resumo:
A synthetic human atrial natriuretic peptide of 26 aminoacids [human (3-28)ANP or hANP] was infused into normal male volunteers. Six subjects were infused for 4 h at 1-wk intervals with either hANP at the rate of 0.5 or 1.0 microgram/min or its vehicle in a single-blind randomized order. Human (3-28)ANP at the dose of 0.5 microgram/min raised immunoreactive plasma ANP levels from 104 +/- 17 to 221 +/- 24 pg/ml (mean +/- SEM), but it induced no significant change in blood pressure, heart rate, effective renal plasma flow, glomerular filtration rate, or renal electrolyte excretion. At the rate of 1.0 microgram/min, human (3-28)ANP increased immunoreactive plasma ANP levels from 89 +/- 12 to 454 +/- 30 pg/ml. It reduced effective renal plasma flow from 523 +/- 40 to 453 +/- 38 ml/min (P less than 0.05 vs. vehicle), but left glomerular filtration rate unchanged. Natriuresis rose from 207 +/- 52 to 501 +/- 69 mumol/min (P less than 0.05 vs. vehicle) and urinary magnesium excretion from 3.6 +/- 0.5 to 5.6 +/- 0.5 mumol/min (P less than 0.01 vs. vehicle). The excretion rate of the other electrolytes, blood pressure, and heart rate were not significantly modified. At both doses, human (3-28)ANP tended to suppress the activity of the renin-angiotensin-aldosterone system. In 3 additional volunteers, the skin blood flow response to human (3-28)ANP, infused for 4 h at the rate of 1.0 microgram/min, was studied by means of a laser-doppler flowmeter. The skin blood flow rose during the first 2 h of peptide administration, then fell progressively to values below baseline. After the infusion was discontinued, it remained depressed for more than 2 h. Thus, in normal volunteers, human (3-28)ANP at the dose of 1.0 microgram/min produced results similar to those obtained previously with rat (3-28)ANP. It enhanced natriuresis without changing the glomerular filtration rate while effective renal plasma flow fell. It also induced a transient vasodilation of the skin vascular bed.
Resumo:
Hypernatremia is defined as an elevated serum sodium concentration. Usually hypernatremia is caused by a relative water deficit occurring with decreased thirst sensation and/or reduced water intake. In rare cases hypernatremia may be caused by excessive sodium intake. Severe hypernatremia can be dangerous and can lead to significant morbidity and mortality. Dangerous hypernatremia can occur in the newborn. Drugs that influence thirst sensation are the main cause of hypernatremia in adults and elderly patients. Hospitalization itself might be a risk factor for developing hypernatremia. Therapy consists in eliminating the causes of hypernatremia and in the specific management of body volume and electrolytes.
Resumo:
Enjeu : L'incidence d'insuffisance rénale terminale augmente d'environ 5-6% par année dans nos régions. L'une des causes majeures d'insuffisance rénale est la néphropathie diabétique qui représente selon les pays entre 25 et 40% des néphropathies terminales. La progression de la néphropathie diabétique peut être ralentie de manière efficace par un bon contrôle du diabète et de l'hypertension artérielle et par le blocage du système rénine-angiotensine. Néanmoins, malgré l'application stricte de ces thérapies préventives, la néphropathie de bons nombres de patients diabétiques continue de progresser. Il est donc important de développer de nouvelles stratégies permettant de préserver la fonction rénale des patients diabétiques soit en améliorant le contrôle de la pression artérielle soit en diminuant la protéinurie. Contexte : Il existe un certain nombre d'évidences expérimentales que le blocage des récepteurs de l'endothéline pourrait avoir un effet positif sur le devenir de la néphropathie diabétique en diminuant de manière efficace la protéinurie même chez des animaux déjà traités efficacement avec un bloqueur du système rénine-angiotensine. Dans des études de phase 2 impliquant l'avosentan, un antagoniste des récepteurs de l'endothéline actuellement en cours de développement pour le traitement de la néphropathie diabétique, on a pu démontrer que cet antagoniste, prescrit à des doses oscillant entre 5 et 50 mg par jour per os, diminue la protéinurie d'environ 20-40% chez des patients déjà traités avec un IEC ou un antagoniste de l'angiotensine. Toutefois, une grande étude de phase III conduite avec ce médicament chez des patients diabétiques a du être interrompue précocement en raison de l'apparition d'oedèmes et d'une surcharge hydrosodée conduisant dans certains cas à une décompensation cardiaque aiguë. La rétention hydrosodée est un effet secondaire connu des antagonistes de l'endothéline déjà sur le marché. Toutefois, pour l'avosentan, on ne savait pas si des doses plus faibles du médicament avaient aussi un effet négative sur la balance hydrosodée. En outre, les mécanismes rénaux responsables de la rétention hydrosodée sont encore mal connus chez l'homme. C'est pourquoi, nous avons organisé et réalisé cette étude de pharmacologie clinique chez le volontaire sain posant 2 questions : 1) des doses faibles d'avosentan produisent-elles aussi une rétention hydrosodée chez l'homme ? et 2) quels sont les mécanismes rénaux pouvant expliquer la rétention hydrosodée ? Cette thèse est donc une étude clinique de phase I testant chez 23 volontaires sains les effets rénaux de différentes doses d'avosentan ou d'un placebo pour établir la courbe dose-réponse des effets rénaux de ce médicament. L'idée était également de définir quelle dose est sure et bien tolérée pour être utilisée dans une nouvelle étude de phase II. L'avosentan a été administré par voie orale une fois par jour pendant 8 jours à des doses de 0.5, 1.5, 5 et 50 mg. Les effets rénaux hémodynamiques et tubulaires ont été étudiés chez chaque sujet lors de la première administration (jour 1) et après une semaine de traitement (jour 8). Le médicament a induit une prise de poids dose-dépendante déjà présente à 5 mg et maximale à 50 mg (+ 0.8 kg au jour 8). Nous n'avons pas mesuré d'impact de l'avosentan sur l'hémodynamique rénale ni sur les électrolytes plasmatiques. En revanche, nous avons constaté une diminution dose-dépendante de la fraction d'excrétion de sodium (jusqu'à -8.7% avec avosentan 50 mg). Cette diminution était en rapport avec une augmentation dose-dépendante de la réabsorption proximale de sodium. Nous avons également constaté une baisse de la pression artérielle aux doses élevées et une hémodilution marquée par une baisse de l'hématocrite suggérant une rétention hydrique à la plus haute dose. Nos résultats suggèrent donc que l'avosentan induit une rétention sodée rénale dose-dépendante expliquée avant tout par une rétention du sodium au niveau du tubule proximal. Cet effet n'est pas observé à des doses plus basses que 5 mg chez le volontaire sain, suggérant que ce médicament devrait être évalué pour son activité réno-protectrice à des doses inférieures ou égales à 5 mg par jour. La raison pour laquelle les hautes doses produisent plus de rétention sodée est peut être liée à une perte de sélectivité pour les sous-types (A et B) de récepteurs à l'endothéline lorsque l'on administre des doses plus élevées que 5 mg. Perspectives : Les résultats de ce travail de thèse ont donc permis de caractériser les propriétés rénales d'un nouvel antagoniste des récepteurs de l'endothéline chez l'homme. Ces résultats ont aussi permis de guider le développement futur de ce médicament vers des doses plus faibles avec l'espoir de garder les effets bénéfiques sur la protéinurie tout en améliorant le profil de tolérance du médicament par l'utilisation de doses plus faibles. ANGLAIS The endothelin receptor antagonist avosentan may cause fluid overload at doses of 25 and 50 mg, but the actual mechanisms of this effect are unclear. We conducted a placebo-controlled study in 23 healthy subjects to assess the renal effects of avosentan and the dose dependency of these effects. Oral avosentan was administered once daily for 8 days at doses of 0.5, 1.5, 5, and 50 mg. The drug induced a dose-dependent median increase in body weight, most pronounced at 50 mg (0.8 kg on day 8). Avosentan did not affect renal hemodynamics or plasma electrolytes. A dose-dependent median reduction in the fractional renal excretion of sodium was found (up to 8.7% at avosentan 50 mg); this reduction was paralleled by a dose-related increase in proximal sodium reabsorption. It is suggested that avosentan dose-dependently induces sodium retention by the kidney, mainly through proximal tubular effects. The potential clinical benefits of avosentan should therefore be investigated at doses of ≤ 5 mg.