11 resultados para COMPLEX VECTOR FIELDS

em Université de Lausanne, Switzerland


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiological studies of malaria or other vector-transmitted diseases often consider vectors as passive actors in the complex life cycle of the parasites, assuming that vector populations are homogeneous and vertebrate hosts are equally susceptible to being infected during their lifetime. However, some studies based on both human and rodent malaria systems found that mosquito vectors preferentially selected infected vertebrate hosts. This subject has been scarcely investigated in avian malaria models and even less in wild animals using natural host-parasite associations. We investigated whether the malaria infection status of wild great tits, Parus major, played a role in host selection by the mosquito vector Culex pipiens. Pairs of infected and uninfected birds were tested in a dual-choice olfactometer to assess their attractiveness to the mosquitoes. Plasmodium-infected birds attracted significantly fewer mosquitoes than the uninfected ones, which suggest that avian malaria parasites alter hosts' odours involved in vector orientation. Reaction time of the mosquitoes, that is, the time taken to select a host, and activation of mosquitoes, defined as the proportion of individuals flying towards one of the hosts, were not affected by the bird's infection status. The importance of these behavioural responses for the vector is discussed in light of recent advances in related or similar model systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many complex systems may be described by not one but a number of complex networks mapped on each other in a multi-layer structure. Because of the interactions and dependencies between these layers, the state of a single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of five examples of two-layer complex systems: three real-life data sets in the fields of communication (the Internet), transportation (the European railway system), and biology (the human brain), and two models based on random graphs. In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multi-layer systems are much more vulnerable to errors and intentional attacks than they appear from a single layer perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector-transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent-winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation-by-distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The second scientific meeting of the European systems genetics network for the study of complex genetic human disease using genetic reference populations (SYSGENET) took place at the Center for Cooperative Research in Biosciences in Bilbao, Spain, December 10-12, 2012. SYSGENET is funded by the European Cooperation in the Field of Scientific and Technological Research (COST) and represents a network of scientists in Europe that use mouse genetic reference populations (GRPs) to identify complex genetic factors influencing disease phenotypes (Schughart, Mamm Genome 21:331-336, 2010). About 50 researchers working in the field of systems genetics attended the meeting, which consisted of 27 oral presentations, a poster session, and a management committee meeting. Participants exchanged results, set up future collaborations, and shared phenotyping and data analysis methodologies. This meeting was particularly instrumental for conveying the current status of the US, Israeli, and Australian Collaborative Cross (CC) mouse GRP. The CC is an open source project initiated nearly a decade ago by members of the Complex Trait Consortium to aid the mapping of multigenetic traits (Threadgill, Mamm Genome 13:175-178, 2002). In addition, representatives of the International Mouse Phenotyping Consortium were invited to exchange ongoing activities between the knockout and complex genetics communities and to discuss and explore potential fields for future interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le système digestif est colonisé dès la naissance par une population bactérienne, le microbiote, qui influence le développement du système immunitaire. Des modifications dans sa composition sont associées à des pathologies comme l'obésité et les maladies inflammatoires chroniques de l'intestin. Outre les antibiotiques, des facteurs environnementaux comme le tabagisme semblent aussi avoir une influence sur la composition de la flore intestinale, pouvant en partie expliquer la prise de poids à l'arrêt du tabac avec une modification de la composition du microbiote proche de celle observée chez des personnes obèses (profil microbiotique montrant des capacités accrues d'extraction calorique des aliments ingérés). Ces découvertes permettent d'imaginer de nouvelles approches diagnostiques et thérapeutiques via la régulation de ce microbiome. The digestive tract is colonized from birth by a bacterial population called the microbiota which influences the development of the immune system. Modifications in its composition are associated with problems such as obesity or inflammatory bowel diseases. Antibiotics are known to influence the intestinal microbiota but other environmental factors such as cigarette smoking also seem to have an impact on its composition. This influence might partly explain weight gain which is observed after smoking cessation. Indeed there is a modification of the gut microbiota which becomes similar to that of obese people with a microbiotical profile which is more efficient to extract calories from ingested food. These new findings open new fields of diagnostic and therapeutic approaches through the regulation of the microbiota.