272 resultados para Brain Evolution
em Université de Lausanne, Switzerland
Resumo:
Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type.
Resumo:
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best-fit line for the scaling relationship under scrutiny.
Resumo:
Evolution of the neurochemical profile consisting of 19 metabolites after 30 mins of middle cerebral artery occlusion was longitudinally assessed at 3, 8 and 24 h in 6 to 8 microL volumes in the striatum using localized 1H-magnetic resonance spectroscopy at 14.1 T. Profound changes were detected as early as 3 h after ischemia, which include elevated lactate levels in the presence of significant glucose concentrations, decreases in glutamate and a transient twofold glutamine increase, likely to be linked to the excitotoxic release of glutamate and conversion into glial glutamine. Interestingly, decreases in N-acetyl-aspartate (NAA), as well as in taurine, exceeded those in neuronal glutamate, suggesting that the putative neuronal marker NAA is rather a sensitive marker of neuronal viability. With further ischemia evolution, additional, more profound concentration decreases were detected, reflecting a disruption of cellular functions. We conclude that early changes in markers of energy metabolism, glutamate excitotoxicity and neuronal viability can be detected with high precision non-invasively in mice after stroke. Such investigations should lead to a better understanding and insight into the sequential early changes in the brain parenchyma after ischemia, which could be used for identifying new targets for neuroprotection.
Resumo:
BACKGROUND AND PURPOSE: The alteration of brain maturation in preterm infants contributes to neurodevelopmental disabilities during childhood. Serial imaging allows understanding of the mechanisms leading to dysmaturation in the preterm brain. The purpose of the present study was to provide reference quantitative MR imaging measures across time in preterm infants, by using ADC, fractional anisotropy, and T1 maps obtained by using the magnetization-prepared dual rapid acquisition of gradient echo technique. MATERIALS AND METHODS: We included preterm neonates born at <30 weeks of gestational age without major brain lesions on early cranial sonography and performed 3 MRIs (3T) from birth to term-equivalent age. Multiple measurements (ADC, fractional anisotropy, and T1 relaxation) were performed on each examination in 12 defined white and gray matter ROIs. RESULTS: We acquired 107 MRIs (35 early, 33 intermediary, and 39 at term-equivalent age) in 39 cerebral low-risk preterm infants. Measures of T1 relaxation time showed a gradual and significant decrease with time in a region- and hemispheric-specific manner. ADC values showed a similar decline with time, but with more variability than T1 relaxation. An increase of fractional anisotropy values was observed in WM regions and inversely a decrease in the cortex. CONCLUSIONS: The gradual change with time reflects the progressive maturation of the cerebral microstructure in white and gray matter. Our study provides reference trajectories from 25 to 40 weeks of gestation of T1 relaxation, ADC, and fractional anisotropy values in low-risk preterm infants. We speculate that deviation thereof might reflect disturbed cerebral maturation; the correlation of this disturbed maturation with neurodevelopmental outcome remains to be addressed.
Resumo:
Objectives: Magnetic resonance (MR) imaging and spectroscopy (MRS) allow the establishment of the anatomical evolution and neurochemical profiles of ischemic lesions. The aim of the present study was to identify markers of reversible and irreversible damage by comparing the effects of 10-mins middle cerebral artery occlusion (MCAO), mimicking a transient ischemic attack, with the effects of 30-mins MCAO, inducing a striatal lesion. Methods: ICR-CD1 mice were subjected to 10-mins (n = 11) or 30-mins (n = 9) endoluminal MCAO by filament technique at 0 h. The regional cerebral blood flow (CBF) was monitored in all animals by laser- Doppler flowmetry with a flexible probe fixed on the skull with < 20% of baseline CBF during ischemia and > 70% during reperfusion. All MR studies were carried out in a horizontal 14.1T magnet. Fast spin echo images with T2-weighted parameters were acquired to localize the volume of interest and evaluate the lesion size. Immediately after adjustment of field inhomogeneities, localized 1H MRS was applied to obtain the neurochemical profile from the striatum (6 to 8 microliters). Six animals (sham group) underwent nearly identical procedures without MCAO. Results: The 10-mins MCAO induced no MR- or histologically detectable lesion in most of the mice and a small lesion in some of them. We thus had two groups with the same duration of ischemia but a different outcome, which could be compared to sham-operated mice and more severe ischemic mice (30-mins MCAO). Lactate increase, a hallmark of ischemic insult, was only detected significantly after 30-mins MCAO, whereas at 3 h post ischemia, glutamine was increased in all ischemic mice independently of duration and outcome. In contrast, glutamate, and even more so, N-acetyl-aspartate, decreased only in those mice exhibiting visible lesions on T2-weighted images at 24 h. Conclusions: These results suggest that an increased glutamine/glutamate ratio is a sensitive marker indicating the presence of an excitotoxic insult. Glutamate and NAA, on the other hand, appear to predict permanent neuronal damage. In conclusion, as early as 3 h post ischemia, it is possible to identify early metabolic markers manifesting the presence of a mild ischemic insult as well as the lesion outcome at 24 h.
Resumo:
The enzyme glutamate dehydrogenase (GDH) is important for recycling the chief excitatory neurotransmitter, glutamate, during neurotransmission. Human GDH exists in housekeeping and brain-specific isotypes encoded by the genes GLUD1 and GLUD2, respectively. Here we show that GLUD2 originated by retroposition from GLUD1 in the hominoid ancestor less than 23 million years ago. The amino acid changes responsible for the unique brain-specific properties of the enzyme derived from GLUD2 occurred during a period of positive selection after the duplication event.
Resumo:
BACKGROUND: Despite major advances in care of premature infants, survivors exhibit mild cognitive deficits in around 40%. Beside severe intraventricular haemorrhages (IVH) and cystic periventricular leucomalacia (PVL), more subtle patterns such as grade I and II IVH, punctuate WM lesions and diffuse PVL might be linked to the cognitive deficits. Grey matter disease is also recognized to contribute to long-term cognitive impairment.¦OBJECTIVE: We intend to use novel MR techniques to study more precisely the different injury patterns. In particular MP2RAGE (magnetization prepared dual rapid echo gradient) produces high-resolution quantitative T1 relaxation maps. This contrast is known to reflect tissue anomalies such as white matter injury in general and dysmyelination in particular. We also used diffusion tensor imaging, a quantitative technique known to reflect white matter maturation and disease.¦DESIGN/METHODS: All preterm infants born under 30 weeks of GA were included. Serial 3T MR-imaging using a neonatal head-coil at DOL 3, 10 and at term equivalent age (TEA), using DTI and MP2RAGE sequences was performed. MP2RAGE generates a T1 map and allows calculating the relaxation time T1. Multiple measurements were performed for each exam in 12 defined white and grey matter ROIs.¦RESULTS: 16 patients were recruited: mean GA 27 2/7 w (191,2d SD±10,8), mean BW 999g (SD±265). 39 MRIs were realized (12 early: mean 4,83d±1,75, 13 late: mean 18,77d±8,05 and 14 at TEA: 88,91d±8,96). Measures of relaxation time T1 show a gradual and significant decrease over time (for ROI PLIC mean±SD in ms: 2100.53±102,75, 2116,5±41,55 and 1726,42±51,31 and for ROI central WM: 2302,25±79,02, 2315,02±115,02 and 1992,7±96,37 for early, late and TEA MR respectively). These trends are also observed in grey matter area, especially in thalamus. Measurements of ADC values show similar monotonous decrease over time.¦CONCLUSIONS: From these preliminary results, we conclude that quantitative MR imaging in very preterm infants is feasible. On the successive MP2RAGE and DTI sequences, we observe a gradual decrease over time in the described ROIs, representing the progressive maturation of the WM micro-structure and interestingly the same evolution is observed in the grey matter. We speculate that our study will provide normative values for T1map and ADC and might be a predictive factor for favourable or less favourable outcome.
Resumo:
Cavernomas after radiotherapy, developing in irradiated children treated for malignant brain tumors, are capillary malformations that are frquently asymptomatic and benign in their evolution. However, in some children this can lead to haemorrhage, which can cause symptoms and need a surgical intervention. Although there is increasing evidence of cavernoma as a possible long term sequelae after radiotherapy, there is still information needed concerning very long follow-up. Different groups studied this problem focusing on incidence and the lag time radiotherapy and the appearance of cavernomas. Results showed that the period can last a long time and the cumulative incidence increases over the years, but the numbers vary between the different publications. More recently researchers tried to compare several predictive factors with the incidence of cavernomas, such as age at radiotherapy, gender, kind of cancer and chemotherapy. No relation has been recorded except a growing incidence when the radiotherapy was started before the age of ten. Reason of the study : The observations reported until now comprised a very heterogenous cohort of patients. No study has ever been made with patients affected only by malignant brain tumors which are typical in a children. As for the studied predictive factors, no publication described the technical aspect of radiotherapy. Objectives: To study a population of pediatric patients children with only malignant brain tumors in order tp calculate the incidence of cavernomas after radiotherapy and their evolution over a longer period compared to so far published researches. To analyse known predictive factors such as age of children at the moment of the radiotherapy, gender, and kind of cancer. To study extensively the role technical aspects of radiotherapy in the occurrence of cavernomas. Methodology: Retrospective study of a group of 62 children irradiated at the CHUV (Lausanne, Switzerland) between 1975 and 2010 due to the following malignant brain cancers: medulloblastoma, ependymoma, PNET. The images of IRM post radiotherapy will be analysed by a neuroradiologist and a radiotherapist will interpret the radiotherapy data. Expected results: We expect to find relations between the incidence of cavernomas post radiotherapy and the predictive factors including different techniques of radiotherapy and consequently to define the best long-term follow up of the children at risk.
Resumo:
OBJECT: The aim of this study was to evaluate the long-term safety and efficacy of bilateral contemporaneous deep brain stimulation (DBS) in patients who have levodopa-responsive parkinsonism with untreatable motor fluctuations. Bilateral pallidotomy carries a high risk of corticobulbar and cognitive dysfunction. Deep brain stimulation offers new alternatives with major advantages such as reversibility of effects, minimal permanent lesions, and adaptability to individual needs, changes in medication, side effects, and evolution of the disease. METHODS: Patients in whom levodopa-responsive parkinsonism with untreatable severe motor fluctuations has been clinically diagnosed underwent bilateral pallidal magnetic resonance image-guided electrode implantation while receiving a local anesthetic. Pre- and postoperative evaluations at 3-month intervals included Unified Parkinson's Disease Rating Scale (UPDRS) scoring, Hoehn and Yahr staging, 24-hour self-assessments, and neuropsychological examinations. Six patients with a mean age of 55 years (mean 42-67 years), a mean duration of disease of 15.5 years (range 12-21 years), a mean "on/off' Hoehn and Yahr stage score of 3/4.2 (range 3-5), and a mean "off' time of 40% (range 20-50%) underwent bilateral contemporaneous pallidal DBS, with a minimum follow-up period lasting 24 months (range 24-30 months). The mean dose of levodopa in these patients could not be changed significantly after the procedure and pergolide was added after 12 months in five patients because of recurring fluctuations despite adjustments in stimulation parameters. All but two patients had no fluctuations until 9 months. Two of the patients reported barely perceptible fluctuations at 12 months and two at 15 months; however, two patients remain without fluctuations at 2 years. The mean improvements in the UPDRS motor score in the off time and the activities of daily living (ADL) score were more than 50%; the mean off time decreased from 40 to 10%, and the mean dyskinesia and complication of treatment scores were reduced to one-third until pergolide was introduced at 12 months. No significant improvement in "on" scores was observed. A slight worsening after 1 year was observed and three patients developed levodopa- and stimulation-resistant gait ignition failure and minimal fluctuations at 1 year. Side effects, which were controlled by modulation of stimulation, included dysarthria, dystonia, and confusion. CONCLUSIONS: Bilateral pallidal DBS is safe and efficient in patients who have levodopa-responsive parkinsonism with severe fluctuations. Major improvements in motor score, ADL score, and off time persisted beyond 2 years after the operation, but signs of decreased efficacy started to be seen after 12 months.
Resumo:
INTRODUCTION: Oxidative stress is involved in the development of secondary tissue damage and organ failure. Micronutrients contributing to the antioxidant (AOX) defense exhibit low plasma levels during critical illness. The aim of this study was to investigate the impact of early AOX micronutrients on clinical outcome in intensive care unit (ICU) patients with conditions characterized by oxidative stress. METHODS: We conducted a prospective, randomized, double-blind, placebo-controlled, single-center trial in patients admitted to a university hospital ICU with organ failure after complicated cardiac surgery, major trauma, or subarachnoid hemorrhage. Stratification by diagnosis was performed before randomization. The intervention was intravenous supplements for 5 days (selenium 270 microg, zinc 30 mg, vitamin C 1.1 g, and vitamin B1 100 mg) with a double-loading dose on days 1 and 2 or placebo. RESULTS: Two hundred patients were included (102 AOX and 98 placebo). While age and gender did not differ, brain injury was more severe in the AOX trauma group (P = 0.019). Organ function endpoints did not differ: incidence of acute kidney failure and sequential organ failure assessment score decrease were similar (-3.2 +/- 3.2 versus -4.2 +/- 2.3 over the course of 5 days). Plasma concentrations of selenium, zinc, and glutathione peroxidase, low on admission, increased significantly to within normal values in the AOX group. C-reactive protein decreased faster in the AOX group (P = 0.039). Infectious complications did not differ. Length of hospital stay did not differ (16.5 versus 20 days), being shorter only in surviving AOX trauma patients (-10 days; P = 0.045). CONCLUSION: The AOX intervention did not reduce early organ dysfunction but significantly reduced the inflammatory response in cardiac surgery and trauma patients, which may prove beneficial in conditions with an intense inflammation. TRIALS REGISTRATION: Clinical Trials.gov RCT Register: NCT00515736.
Resumo:
Sleep-wake disturbances are frequently observed in stroke patients and are associated with poorer functional outcome. Until now the effects of sleep on stroke evolution are unknown. The purpose of the present study was to evaluate the effects of three sleep deprivation (SD) protocols on brain damages after focal cerebral ischemia in a rat model. Permanent occlusion of distal branches of the middle cerebral artery was induced in adult rats. The animals were then subjected to 6h SD, 12h SD or sleep disturbances (SDis) in which 3 x 12h sleep deprivation were performed by gentle handling. Infarct size and brain swelling were assessed by Cresyl violet staining, and the number of damaged cells was measured by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Behavioral tests, namely tape removal and cylinder tests, were performed for assessing sensorimotor function. In the 6h SD protocol, no significant difference (P > 0.05) was found either in infarct size (42.5 ± 30.4 mm3 in sleep deprived animals vs. 44.5 ± 20.5 mm3 in controls, mean ± s.d.), in brain swelling (10.2 ± 3.8 % in sleep deprived animals vs. 11.3 ± 2.0 % in controls) or in number of TUNEL-positive cells (21.7 ± 2.0/mm2 in sleep deprived animals vs. 23.0 ± 1.1/mm2 in controls). In contrast, 12h sleep deprivation increased infarct size by 40 % (82.8 ± 10.9 mm3 in SD group vs. 59.2 ± 13.9 mm3 in control group, P = 0.008) and number of TUNEL-positive cells by 137 % (46.8 ± 15/mm in SD group vs. 19.7 ± 7.7/mm2 in control group, P = 0.003). There was no significant difference (P > 0.05) in brain swelling (12.9 ± 6.3 % in sleep deprived animals vs. 11.6 ± 6.0 % in controls). The SDis protocol also increased infarct size by 76 % (3 x 12h SD 58.8 ± 20.4 mm3 vs. no SD 33.8 ± 6.3 mm3, P = 0.017) and number of TUNEL-positive cells by 219 % (32.9 ± 13.2/mm2 vs. 10.3 ± 2.5/mm2, P = 0.008). Brain swelling did not show any difference between the two groups (24.5 ± 8.4 % in SD group vs. 16.7 ± 8.9 % in control group, p > 0.05). Both behavioral tests did not show any concluding results. In summary, we demonstrate that sleep deprivation aggravates brain damages in a rat model of stroke. Further experiments are needed to unveil the mechanisms underlying these effects.
Resumo:
In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.
Resumo:
Objectives: Glutamine synthetase is a critical step in the glutamate-glutamine cycle, the major mechanism of glutamate neurotransmission and is implicated in the mechanism of ammonia toxicity. 15N MRS is an alternative approach to 13C MRS in studying glutamate- glutamine metabolism. 15N MRS studies allow to measure an apparent glutamine synthesis rate (Vsyn) which reflects a combination of the glutamate- glutamine cycle activity (Vnt) and net glutamine accumulation. The net glutamine synthesis (Vsyn-Vnt) can be directly measured from 1H NMR. Therefore, the aim of this study was to perform in vivo localized 1H MRS interleaved with 15N MRS to directly measure the net glutamine synthesis rate and the apparent glutamine synthesis rate under 15N labeled ammonia infusion in the rat brain, respectively. Methods: 1H and 15N MRS data were acquired interleaved on a 9.4T system (Varian/Magnex Scientific) using 5 rats. 15NH4Cl solution was infused continuously into the femoral vein for up to 10 h (4.5 mmol/h/kg).1 The plasma ammonia concentration was increased to 0.95±0.08 mmol/L (Analox GM7 analyzer). 1H spectra were acquired and quantified as described previously.2 15N unlocalized and localized spectra were acquired using the sequence;3 and quantified using AMARES and an external reference method.4 The metabolic model used to analyze the total Gln and 5-15N labeled Gln time courses is shown on Figure 1A. Results: Glutamine concentration increased from 2.5±0.3 to 15±3.3 mmol/kg whereas the total glutamate concentrations remained unchanged (Figure 1B). The linear fit of the time-evolution of the total Gln from the 1H spectra gave the net synthesis flux (Vsyn-Vnt), which was 0.021± 0.006 mmol/min per g (Figure 1D). The 5-15N Gln peak (_271 ppm) was visible in the first and all subsequent scans, whereas the 2-15N Gln/Glu peak (_342 ppm) appeared after B1.5 h (Figure 1C). From the in vivo 5-15N Gln time course, Vsyn = 0.29±0.1 mmol/min per g and a plasma NH3 fractional enrichment of 71%±6% were calculated. Vnt was 0.26±0.1 mmol/min/g, obtained assuming a negligible Gln efflux.5 Vsyn and Vnt were within the range of 13C NMR measurements.6 Conclusion: The combination of 1H and 15N NMR allowed for the first time a direct and localized measurement of Vnt and apparent glutamine synthesis rate. Vnt is approximately one order of magnitude faster than the net glutamine accumulation.