5 resultados para Binary alloys

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. METHODS: Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i) linear regression; (ii) logistic classification; (iii) regression trees; (iv) classification trees (iii and iv are collectively known as "CART"). Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. RESULTS: Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60-80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. CONCLUSIONS: There were no striking differences between either the algebraic (i, ii) vs. non-algebraic (iii, iv), or the regression (i, iii) vs. classification (ii, iv) modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use panel data from the U. S. Health and Retirement Study, 1992-2002, to estimate the effect of self-assessed health limitations on the active labor market participation of older men. Self-assessments of health are likely to be endogenous to labor supply due to justification bias and individual-specific heterogeneity in subjective evaluations. We address both concerns. We propose a semiparametric binary choice procedure that incorporates nonadditive correlated individual-specific effects. Our estimation strategy identifies and estimates the average partial effects of health and functioning on labor market participation. The results indicate that poor health plays a major role in labor market exit decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a new treatment is compared to an established one in a randomized clinical trial, it is standard practice to statistically test for non-inferiority rather than for superiority. When the endpoint is binary, one usually compares two treatments using either an odds-ratio or a difference of proportions. In this paper, we propose a mixed approach which uses both concepts. One first defines the non-inferiority margin using an odds-ratio and one ultimately proves non-inferiority statistically using a difference of proportions. The mixed approach is shown to be more powerful than the conventional odds-ratio approach when the efficacy of the established treatment is known (with good precision) and high (e.g. with more than 56% of success). The gain of power achieved may lead in turn to a substantial reduction in the sample size needed to prove non-inferiority. The mixed approach can be generalized to ordinal endpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the strategic interaction between a decision maker who needs to take a binary decision but is uncertain about relevant facts and an informed expert who can send a message to the decision maker but has a preference over the decision.We show that the probability that the expert can persuade the decision maker to take the expert's preferred decision is a hump-shaped function of his costs of sending dishonest messages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of instrumental variable (referred to as Mendelian randomization when the instrument is a genetic variant) has been initially developed to infer on a causal effect of a risk factor on some outcome of interest in a linear model. Adapting this method to nonlinear models, however, is known to be problematic. In this paper, we consider the simple case when the genetic instrument, the risk factor, and the outcome are all binary. We compare via simulations the usual two-stages estimate of a causal odds-ratio and its adjusted version with a recently proposed estimate in the context of a clinical trial with noncompliance. In contrast to the former two, we confirm that the latter is (under some conditions) a valid estimate of a causal odds-ratio defined in the subpopulation of compliers, and we propose its use in the context of Mendelian randomization. By analogy with a clinical trial with noncompliance, compliers are those individuals for whom the presence/absence of the risk factor X is determined by the presence/absence of the genetic variant Z (i.e., for whom we would observe X = Z whatever the alleles randomly received at conception). We also recall and illustrate the huge variability of instrumental variable estimates when the instrument is weak (i.e., with a low percentage of compliers, as is typically the case with genetic instruments for which this proportion is frequently smaller than 10%) where the inter-quartile range of our simulated estimates was up to 18 times higher compared to a conventional (e.g., intention-to-treat) approach. We thus conclude that the need to find stronger instruments is probably as important as the need to develop a methodology allowing to consistently estimate a causal odds-ratio.