90 resultados para Autologous periosteal cells
em Université de Lausanne, Switzerland
Resumo:
Increasing evidence suggests that adoptive transfer of antigen-specific CD8(+) T cells could represent an effective strategy in the fight against chronic viral infections and malignancies such as melanoma. None the less, a major limitation in the implementation of such therapy resides in the difficulties associated with achieving rapid and efficient expansion of functional T cells in culture necessary to obtain the large numbers required for intravenous infusion. Recently, the critical role of the cytokines interleukin (IL)-2, IL-7 and IL-15 in driving T cell proliferation has been emphasized, thus suggesting their use in the optimization of expansion protocols. We have used major histocompatibility complex (MHC) class I/peptide multimers to monitor the expansion of antigen-specific CD8 T lymphocytes from whole blood, exploring the effect of antigenic peptide dose, IL-2, IL-7 and IL-15 concentrations on the magnitude and functional characteristics of the antigen-specific CD8(+) T cells generated. We show here that significant expansions of antigen-specific T cells, up to 50% of the CD8(+) T cell population, can be obtained after a single round of antigen/cytokine (IL-2 or IL-15) stimulation, and that these cells display good cytolytic and interferon (IFN)-gamma secretion capabilities. Our results provide an important basis for the rapid in vitro expansion of autologous T cells from the circulating lymphocyte pool using a simple procedure, which is necessary for the development of adoptive transfer therapies.
Resumo:
PURPOSE: Whole tumor lysates are promising antigen sources for dendritic cell (DC) therapy as they contain many relevant immunogenic epitopes to help prevent tumor escape. Two common methods of tumor lysate preparations are freeze-thaw processing and UVB irradiation to induce necrosis and apoptosis, respectively. Hypochlorous acid (HOCl) oxidation is a new method for inducing primary necrosis and enhancing the immunogenicity of tumor cells. EXPERIMENTAL DESIGN: We compared the ability of DCs to engulf three different tumor lysate preparations, produce T-helper 1 (TH1)-priming cytokines and chemokines, stimulate mixed leukocyte reactions (MLR), and finally elicit T-cell responses capable of controlling tumor growth in vivo. RESULTS: We showed that DCs engulfed HOCl-oxidized lysate most efficiently stimulated robust MLRs, and elicited strong tumor-specific IFN-γ secretions in autologous T cells. These DCs produced the highest levels of TH1-priming cytokines and chemokines, including interleukin (IL)-12. Mice vaccinated with HOCl-oxidized ID8-ova lysate-pulsed DCs developed T-cell responses that effectively controlled tumor growth. Safety, immunogenicity of autologous DCs pulsed with HOCl-oxidized autologous tumor lysate (OCDC vaccine), clinical efficacy, and progression-free survival (PFS) were evaluated in a pilot study of five subjects with recurrent ovarian cancer. OCDC vaccination produced few grade 1 toxicities and elicited potent T-cell responses against known ovarian tumor antigens. Circulating regulatory T cells and serum IL-10 were also reduced. Two subjects experienced durable PFS of 24 months or more after OCDC. CONCLUSIONS: This is the first study showing the potential efficacy of a DC vaccine pulsed with HOCl-oxidized tumor lysate, a novel approach in preparing DC vaccine that is potentially applicable to many cancers. Clin Cancer Res; 19(17); 4801-15. ©2013 AACR.
Resumo:
Tumor-reactive T cells play an important role in cancer immunosurveillance. Applying the multimer technology, we report here an unexpected high frequency of Melan-A-specific CTLs in a melanoma patient with progressive lymph node metastases, consisting of 18 and 12.8% of total peripheral blood and tumor-infiltrating CD8+ T cells, respectively. Melan-A-specific CTLs revealed a high cytolytic activity against allogeneic Melan-A-expressing target cells but failed to kill the autologous tumor cells. Loading of the tumor cells with Melan-A peptide reversed the resistance to killing, suggesting impaired function of the MHC class I antigen processing and presentation pathway. Mutations of the coding region of the HLA-A2 binding Melan-A26-35 peptide or down-regulation of the MHC class I heavy chain, the antigenic peptide TAP, and tapasin could be excluded. However, PCR and immunohistochemical analysis revealed a deficiency of the immunoproteasomes low molecular weight protein 2 and low molecular weight protein 7 in the primary tumor cells, which affects the quantity and quality of generated T-cell epitopes and might explain the resistance to killing. This is supported by our data, demonstrating that the resistance to killing can be partially reversed by pre-exposure of the tumor cells to IFN-gamma, which is known to induce the immunoproteasomes. Overall, this is the first report of an extremely high frequency of tumor-specific CTLs that exhibit competent T-cell-effector functions but fail to lyse the autologous tumor cells. Immunotherapeutic approaches should not only focus on the induction of a robust antitumor immune response, but should also have to target tumor immune escape mechanisms.
Resumo:
Rationale: The purpose of this article is to demonstrate the use of homologous culture cells in treating an advanced coccon formation of the hand and three extended squamous cell carcinomas of the lower and upper limb in a patient with recessive dystrophic epidermolysis bullosa. The preparation and application of these cells in the operation room are being described. Methods: A number of surgical approaches have been described to correct these deformities in order to improve function.We propose a new therapeutic approach of treating loss of motion and independent digital function as well as coverage of large skin defects in a patient with recessive dystrophic epidermolysis bullosa by using autologous culture cells. Surgical treatment of these patients is really difficult because of the existing skin fragility. Furthermore, surgical wounds do not easily heal because of recurrent blisters and erosions as well as due to the patients' poor nutricial status. Results: We report our experience of mutiple extended cutaneous squamous cell carcinomas arising in our patient which were successfully managed using autologous composite cultured skin grafts. The cocoon hand deformity was also treated with the limb becoming functional. Conclusion: The use of autologous keratinocytes and fibroblasts in epidermolysis bullosa is hereby outlined for the fist time.
Resumo:
Cell therapy for nucleus pulposus (NP) regeneration is an attractive treatment for early disc degeneration as shown by studies using autologous NP cells or stem cells. Another potential source of cells is foetal cells. We investigated the feasibility of isolating foetal cells from human foetal spine tissues and assessed their chondrogenic potential in alginate bead cultures. Histology and immunohistochemistry of foetal tissues showed that the structure and the matrix composition (aggrecan, type I and II collagen) of foetal intervertebral disc (IVD) were similar to adult IVD. Isolated foetal cells were cultured in monolayer in basic media supplemented with 10% Fetal Bovine Serum (FBS) and from each foetal tissue donation, a cell bank of foetal spine cells at passage 2 was established and was composed of around 2000 vials of 5 million cells. Gene expression and immunohistochemistry of foetal spine cells cultured in alginate beads during 28 days showed that cells were able to produce aggrecan and type II collagen and very low level of type I and type X collagen, indicating chondrogenic differentiation. However variability in matrix synthesis was observed between donors. In conclusion, foetal cells could be isolated from human foetal spine tissues and since these cells showed chondrogenic potential, they could be a potential cell source for IVD regeneration.
Resumo:
La sclérose en plaques (SEP) est une maladie démyélinisante du système nerveux central (SNC) provoquant des pertes motrices, sensitives et cognitives. La SEP se déclare chez le jeune adulte ayant des prédispositions génétiques, mais semble induite, par des facteurs environnementaux. La SEP touche principalement les femmes et sa prévalence dans les zones à haut risque, tel que la Suisse, est de 0.1%. Bien que son étiologie exacte reste méconnue, nous savons que la maladie est médiée par des lymphocytes T autoréactifs périphériques, qui infiltrent le SNC où ils activent d'autres cellules immunitaires ainsi que les cellules du SNC elles-mêmes, créant un foyer inflammatoire, qui va attaquer et finir par tuer les oligodendrocytes et les neurones. Les épisodes inflammatoires sont entrecoupés par des phases de rémission associées à une guérison partielle des lésions. Cette première phase de la maladie, comprenant des épisodes inflammatoires et de rémissions est appelé SEP récurrente-rémittente (SEP-RR) et touche 90% des patients. Elle évolue, dans deux-tiers des cas, vers une SEP secondaire progressive (SEP-SP), qui est caractérisée par une progression constante de la maladie, associée à une réduction de l'inflammation mais une augmentation de la neurodégénérescence. Les patients souffrants de SEP primaire progressive (SEP-PP) développent directement les symptômes de la phase progressive de la maladie. Les thérapies disponibles ont considérablement amélioré l'évolution de la maladie des patients SEP-RR, en agissant sur une diminution de la réponse immunitaire et donc de l'inflammation. Cependant, ces traitements sont inefficaces chez les patients SEP-SP et SEP-PP, n'agissant pas sur la neurodégénérescence. IL-22, une cytokine sécrétée notoirement par les cellules Th17, a été associée à la SEP en contribuant à la perméabilisation de la barrière hémato-encéphalique et à l'inflammation du SNC, qui sont des étapes clés de la pathogenèse de la maladie. En outre, le gène codant pour un inhibiteur puissant d'IL- 22, 'IL-22 binding protein' (IL-22BP), a été démontré comme un facteur de risque de la SEP. Ces indices nous ont poussés à nous intéresser de plus près au rôle de l'IL-22 dans la SEP. Nous avons pu montrer qu'IL-22 et IL-22BP étaient augmentées dans le sang des patients SEP par rapport à des sujets sains. Nous avons trouvé qu'IL-22 cible spécifiquement les astrocytes dans le SNC et que son récepteur est particulièrement exprimé dans les lésions des patient SEP. Contre toute attente, nous avons pu montrer que l'IL-22 semble soutenir la survie des astrocytes. Cette découverte, suggérant qu'IL-22 serait protecteur pour le SNC et pour la SEP, confirme de récentes publications et ouvre la voie à de potentielles applications thérapeutiques. En parallèle, dans le but de mieux comprendre l'immunopathogenèse de la SEP, nous avons développé les techniques de culture de cellules souches pluripotentes induites (iPSC). Nos iPSC sont dérivées du sang des donneurs et acquièrent toutes les propriétés des cellules souches embryonnaires après induction. Les iPSC peuvent ensuite être différenciées en différents types de cellules, dont les cellules du SNC. Nous avons ainsi pu obtenir avec succès des neurones, dérivés de cellules du sang, en passant par le stade des iPSC. La prochaine étape consiste à générer des cultures d'astrocytes et d'oligodendrocytes et ainsi obtenir les principales cellules du SNC, le but étant de former de véritables 'cerveaux-en-culture'. Cet outil semble particulièrement adapté à l'étude de l'activité de diverses molécules sur les cellules du SNC, comme par exemple l'IL-22 et d'autres molécules ayant un potentiel intérêt thérapeutique au niveau du SNC. Le but ultime étant de développer des co-cultures de cellules du SNC avec des cellules immunitaires autologues, de patients SEP et de sujets sains, afin de mettre en évidence l'attaque des cellules du SNC par des leucocytes autoréactifs. Ce projet prospectif a permis d'accroître nos connaissance sur des aspects immunitaires de la SEP et à pour but de mieux comprendre l'immunopathogenèse de la SEP afin d'élaborer de nouvelles stratégies thérapeutiques. -- La sclérose en plaques est une maladie auto-inflammatoire du système nerveux central conduisant à la destruction de la myéline, indispensable à la conduction nerveuse, et finalement à la mort des neurones eux-mêmes. Cela a pour conséquence des pertes motrices, sensorielles et cognitives, qui ont tendance à s'aggraver au fil de la maladie. Elle se déclare chez le jeune adulte, entre l'âge de 20 et 40 ans, et prédomine chez la femme. En Suisse, environ une personne sur l'OOO est atteinte de sclérose en plaques. Les causes exactes de cette maladie, qui incluent des facteurs génétiques et environnementaux, sont encore mal connues. Des traitements de plus en plus efficaces ont été développés ces dernières années et ont permis de drastiquement améliorer l'évolution de la maladie chez les patients atteints de sclérose en plaques. Cependant, ces traitements ne sont efficaces que sur certaines catégories de patients et peuvent engendrer de lourds effets secondaires. Ces thérapies agissent presque exclusivement sur les cellules du système immunitaire en les désactivant partiellement, mais pas sur les cellules nerveuses, qui sont pourtant celles qui conditionnent le devenir du patient. Le développement de médicaments protégeant ou permettant la régénération des cellules du système nerveux central est donc primordial. L'étude de l'interleukine-22 nous a permis de montrer que cette cytokine ('hormone' du système immunitaire) pouvait cibler spécifiquement les astrocytes, des cellules gliales qui jouent un rôle central dans le maintien de l'équilibre du système nerveux central. Nos recherches ont montré que cette interleukine-22 permettrait une meilleure survie des astrocytes durant la phase aiguë de la maladie et aurait aussi des propriétés neuroprotectrices. En parallèle, nous sommes en train de développer un nouveau modèle in vitro d'étude de la sclérose en plaques grâce à la technologie des cellules souches pluripotentes induites. Ces cellules souches sont induites à partir de cellules du sang du donneur et acquièrent toutes les caractéristiques des cellules souches embryonnaires présentes dans un organisme en formation. Ainsi, ces cellules souches pluripotentes ont, par exemple, la capacité de se différencier en cellules du système nerveux central. Nous avons pu, de cette manière, obtenir des neurones. Le but ultime serait de pouvoir reconstituer une ébauche de cerveau in vitro, en cultivant ensemble différents types de cellules du système nerveux central, afin d'y réaliser des expériences avec des cellules immunitaires du même donneur. Ces travaux ont pour but d'améliorer notre compréhension de la pathogenèse de la sclérose en plaques et de permettre le développement de nouvelles stratégies thérapeutiques. --Multiple sclerosis (MS) is a demyelinating disease of the central nervous system leading to cognitive, sensitive and motor disabilities. MS occurs in genetically predisposed young adults with probable environmental triggers. MS affects predominantly women and its prevalence in high risk area such as Switzerland is 0.1%. Though its exact aetiology remains undetermined, we know that autoreactive T cells from de periphery are reactivated and recruited into the central nervous system (CNS) were they further activate other immune cells and resident cells, creating inflammatory foci, where oligodendrocytes and neurons are insulted and, eventually, killed. Inflammatory episodes, called relapses, are interspersed with remission phases where partial recovery of the lesions occurs. This first phase of the disease, occurring in 90% of the patients, is called relapsing-remitting MS (RR-MS) and is leading, in two-third of the cases, to secondary-progressive MS (SP-MS), where there is a continuous steady progression of the disease, associated with reduced inflammation but increased neurodegeneration. Primary-progressive MS (PP-MS) patients experience directly this progressive phase of the disease. Whereas disease modifying therapies have dramatically ameliorated the disease course of RR-MS patients by dampening immunity and, in turn, inflammation, treatments of SP-MS and PP-MS patients, who suffer primarily from the neurodegenerative aspect of the disease, are still inexistent. IL-22, a pro-inflammatory Th17 cell cytokine, has been associated with MS by participating to blood-brain barrier infiltration and CNS inflammation, which are crucial steps in MS pathogenesis. In addition, the gene coding for IL-22 binding protein (IL-22BP), which is a potent secreted IL-22 inhibitor, has been associated with MS risk. These findings call for further investigation on the role of IL-22 in MS. We detected increased IL-22 and IL-22BP in the blood of MS patients as compared to healthy controls. Acting exclusively on cells of nonhematopoietic origin, we found that IL-22 targets specifically astrocytes in the CNS and that its receptor is highly expressed in the lesion of MS patients. Unexpectedly, we found that IL-22 seems to promote survival of astrocytes. This finding, suggesting that IL-22 might be protective for the CNS in the context of MS, is consistent with recent publications and might open putative therapeutic applications at the CNS level. In parallel, with the aim of better understanding the immunopathogenesis of MS, we developed induced pluripotent stem cell (iPSC) techniques. IPSC are derived from blood cells of the donors and bear embryonic stem cell properties. IPSC can be differentiated into various cell types including CNS cells. We successfully obtained neurons derived from the donor blood cells, through iPSC. We further aim at developing astrocytes and oligodendrocytes cultures to recreate a 'brain-in-a-dish'. This would be a powerful tool to test the activity of various compounds on CNS cells, including IL-22 and other putative neuroprotective drugs. Ultimately, the goal is to develop co-cultures of CNS cells with autologous immune cells of MS patients as well as healthy controls to try to expose evidence of CNS cells targeted by autoreactive leukocytes. This prospective project has increased our knowledge of immune aspects of MS and further aims at better understanding the immunopathology of MS in order to pave the way to the elaboration of new therapeutic strategies.
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Autologous brain cell transplantation might be useful for repairing lesions and restoring function of the central nervous system. We have demonstrated that adult monkey brain cells, obtained from cortical biopsy and kept in culture for a few weeks, exhibit neural progenitor characteristics that make them useful for brain repair. Following MPTP treatment, primates were dopamine depleted but asymptomatic. Autologous cultured cells were reimplanted into the right caudate nucleus of the donor monkey. Four months after reimplantation, histological analysis by stereology and TH immunolabeling showed that the reimplanted cells successfully survived, bilaterally migrated in the whole striatum, and seemed to have a neuroprotection effect over time. These results may add a new strategy to the field of brain neuroprotection or regeneration and could possibly lead to future clinical applications.
Resumo:
BACKGROUND: An understanding of the mechanisms responsible for the development and maintenance of allergic inflammation and their clinical implications is needed to develop specific and successful treatment for allergy. OBJECTIVES: To characterize in vitro T-cell responses to Der p 2, one of the major allergens of house dust mite (HDM), and investigate potential correlations between clinical and laboratory parameters. METHODS: Forty-two patients monosensitized to HDM and 10 age-matched, healthy children were studied. Dendritic cells pulsed with Der p 2 were used to stimulate autologous CD14(-) cells. Der p 2-specific T-cell activation markers, proliferation, and cytokine production profiles were examined. RESULTS: Der p 2-specific T-cell activation markers, proliferation, and T(H)2 cytokine production were significantly higher in HDM patients compared with healthy controls. Moreover, a significant correlation between proliferation and T(H)2 cytokine production was observed. Within the allergic group, skin reaction to HDM was significantly stronger in patients with a Der p 2-specific T-cell response. Levels of HDM-specific IgE directly correlated with interleukin 5 and interleukin 13 levels and with skin prick test results and, ultimately, with the patient's family history of allergy. Furthermore, the presence of atopic march correlated with T-cell proliferation. CONCLUSION: We found that, in HDM patients, Der p 2-specific T(H)2 responses, promoted by autologous dendritic cells in vitro, correlate with clinical parameters.
Resumo:
Natural killer (NK) cells have originally been identified based on their capacity to kill transformed cells in a seemingly non-specific fashion. Over the last 15 years, knowledge on receptor ligand systems used by NK cells to specifically detect transformed cells has been accumulating rapidly. One of these receptor ligand systems, the NKG2D pathway, has received particular attention, and now serves as a paradigm for how the immune system is able to gather information about the health status of autologous host cells. In addition to its significance on NK cells, NKG2D, as well as other NK cell receptors, play significant roles on T cells. This review aims at summarizing recent insights into the regulation of NKG2D function, the control over NKG2D ligand expression and the role of NKG2D in tumor immunity. Finally, we will discuss first attempts to exploit NKG2D function to improve immunity to tumors.
Resumo:
Two different types of immunological reaction are of assistance in the diagnosis of cancer: The first is detection of a weak immunological response of the patient toward his own tumor cells. Unfortunately the currently available techniques for the demonstration of humoral or cellular immunological reaction against autologous tumor cells are not reproducible enough to be recommended as routine clinical tests. Secondly, it is possible to use antisera, obtained by immunization of animals with human tumor extracts, for the detection of substances released into the blood by the tumor cells. The two major antigens associated with human cancer that can be measured in the blood by very sensitive immunological methods are the alphafetoprotein (AFP) and the carcinoembryonic antigen (CEA). It is very important for the physician to be fully alive to the usefulness and limitations of such tests in order to interpret them correctly. Clinical situations in which the measurement of AFP and CEA can provide useful information are reviewed.
Resumo:
The skin is privileged because several skin-derived stem cells (epithelial stem cells from epidermis and its appendages, mesenchymal stem cells from dermis and subcutis, melanocyte stem cells) can be efficiently captured for therapeutic use. Main indications remain the permanent coverage of extensive third degree burns and healing of chronic cutaneous wounds, but recent advances in gene therapy technology open the door to the treatment of disabling inherited skin diseases with genetically corrected keratinocyte stem cells. Therapeutic skin stem cells that were initially cultured in research or hospital laboratories must be produced according strict regulatory guidelines, which ensure patients and medical teams that the medicinal cell products are safe, of constant quality and manufactured according to state-of-the art technology. Nonetheless, it does not warrant clinical efficacy and permanent engraftment of autologous stem cells remains variable. There are many challenges ahead to improve efficacy among which to keep telomere-dependent senescence and telomere-independent senescence (clonal conversion) to a minimum in cell culture and to understand the cellular and molecular mechanisms implicated in engraftment. Finally, medicinal stem cells are expansive to produce and reimbursement of costs by health insurances is a major concern in many countries.
Resumo:
There is a widespread agreement from patient and professional organisations alike that the safety of stem cell therapeutics is of paramount importance, particularly for ex vivo autologous gene therapy. Yet current technology makes it difficult to thoroughly evaluate the behaviour of genetically corrected stem cells before they are transplanted. To address this, we have developed a strategy that permits transplantation of a clonal population of genetically corrected autologous stem cells that meet stringent selection criteria and the principle of precaution. As a proof of concept, we have stably transduced epidermal stem cells (holoclones) obtained from a patient suffering from recessive dystrophic epidermolysis bullosa. Holoclones were infected with self-inactivating retroviruses bearing a COL7A1 cDNA and cloned before the progeny of individual stem cells were characterised using a number of criteria. Clonal analysis revealed a great deal of heterogeneity among transduced stem cells in their capacity to produce functional type VII collagen (COLVII). Selected transduced stem cells transplanted onto immunodeficient mice regenerated a non-blistering epidermis for months and produced a functional COLVII. Safety was assessed by determining the sites of proviral integration, rearrangements and hit genes and by whole-genome sequencing. The progeny of the selected stem cells also had a diploid karyotype, was not tumorigenic and did not disseminate after long-term transplantation onto immunodeficient mice. In conclusion, a clonal strategy is a powerful and efficient means of by-passing the heterogeneity of a transduced stem cell population. It guarantees a safe and homogenous medicinal product, fulfilling the principle of precaution and the requirements of regulatory affairs. Furthermore, a clonal strategy makes it possible to envision exciting gene-editing technologies like zinc finger nucleases, TALENs and homologous recombination for next-generation gene therapy.
Resumo:
Immunotherapy is emerging as a promising anti-cancer curative modality. However, in contrast to recent advances obtained employing checkpoint blockade agents and T cell therapies, clinical efficacy of therapeutic cancer vaccines is still limited. Most vaccination attempts in the clinic represent "off-the shelf" approaches since they target common "self" tumor antigens, shared among different patients. In contrast, personalized approaches of vaccination are tailor-made for each patient and in spite being laborious, hold great potential. Recent technical advancement enabled the first steps in the clinic of personalized vaccines that target patient-specific mutated neo-antigens. Such vaccines could induce enhanced tumor-specific immune response since neo-antigens are mutation-derived antigens that can be recognized by high affinity T cells, not limited by central tolerance. Alternatively, the use of personalized vaccines based on whole autologous tumor cells, overcome the need for the identification of specific tumor antigens. Whole autologous tumor cells could be administered alone, pulsed on dendritic cells as lysate, DNA, RNA or delivered to dendritic cells in-vivo through encapsulation in nanoparticle vehicles. Such vaccines may provide a source for the full repertoire of the patient-specific tumor antigens, including its private neo-antigens. Furthermore, combining next-generation personalized vaccination with other immunotherapy modalities might be the key for achieving significant therapeutic outcome.
Resumo:
Reduced expression of CD62L can identify tumor-specific T cells in lymph nodes draining murine tumors. Here, we examined whether this strategy could isolate tumor-specific T cells from vaccinated patients. Tumor vaccine-draining lymph node (TVDLN) T cells of seven patients were separated into populations with reduced (CD62LLow) or high levels of CD62L (CD62LHigh). Effector T cells generated from CD62LLow cells maintained or enriched the autologous tumor-specific type 1 cytokine response compared to unseparated TVDLN T cells in four of four patients showing tumor-specific cytokine secretion. Interestingly, effector T cells generated from CD62LLow or CD62LHigh TVDLN were polarized towards a dominant type 1 or type 2 cytokine profile, respectively. For CD62LLow T cells the type 1 cytokine profile appeared determined prior to culture. Since a tumor-specific type 1 cytokine profile appears critical for mediating anti-tumor activity in vivo, this approach might be used to isolate T cells for adoptive immunotherapy.