2 resultados para Angiospermae

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium uptake by tonoplast enriched membrane vesicles from maize (Zea mays L. cv. LG 11) primary roots was studied. A pH gradient, measured by the fluorescence quenching of quinacrine, was generated across sealed vesicles driven by the pyrophosphate-dependent proton pump. The fluorescence quenching was strongly inhibited by Ca2+; moreover, when increasing Ca2+ concentrations were added to vesicles at steady-state, a concomitant decrease in the proton gradient was observed. Ca2+ uptake using Ca-45(2+) was linear from 10 min when oxalate (10 mM) was present, while Ca2+ uptake was completely inhibited with proton ionophores (FCCP and monensin), indicating a Ca2+/H+ antiport. Membranes were further fractionated using a linear sucrose density gradient (10-45%) and were identified with marker enzymes. Ca2+ uptake co-migrated with the tonoplast pyrophosphate-dependent proton pumping, pyrophosphatase and ATPase activities: the Ca2+/H+ antiport is consequently located at the tonoplast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cuscuta spp. are holoparasitic plants that can simultaneously parasitise several host plants. It has been suggested that Cuscuta has evolved a foraging strategy based on a positive relationship between preuptake investment and subsequent reward on different host species. Here we establish reliable parasite size measures and show that parasitism on individuals of different host species alters the biomass of C. campestris but that within host species size and age also contributes to the heterogeneous resource landscape. We then performed two additional experiments to test whether C. campestris achieves greater resource acquisition by parasitising two host species rather than one and whether C. campestris forages in communities of hosts offering different rewards (a choice experiment). There was no evidence in either experiment for direct benefits of a mixed host diet. Cuscuta campestris foraged by parasitising the most rewarding hosts the fastest and then investing the most on them. We conclude that our data present strong evidence for foraging in the parasitic plant C. campestris.