82 resultados para Analogous Chua`s circuit
em Université de Lausanne, Switzerland
Resumo:
Papez circuit is one of the major pathways of the limbic system, and it is involved in the control of memory and emotion. Structural and functional alterations have been reported in psychiatric, neurodegenerative, and epileptic diseases. Despite the clinical interest, however, in-vivo imaging of the entire circuit remains a technological challenge. We used magnetic resonance diffusion spectrum imaging to comprehensively picture the Papez circuit in healthy humans: (i) the hippocampus-mammillary body pathway, (ii) the connections between the lateral subiculum and the cingulate cortex, and (iii) the mammillo-thalamic tract. The diagnostic and therapeutic implications of these results are discussed in the context of recent findings reporting the involvement of the Papez circuit in neurological and psychiatric diseases.
Resumo:
It has been proved, for several classes of continuous and discrete dynamical systems, that the presence of a positive (resp. negative) circuit in the interaction graph of a system is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor). A positive (resp. negative) circuit is said to be functional when it "generates" several stable states (resp. a cyclic attractor). However, there are no definite mathematical frameworks translating the underlying meaning of "generates." Focusing on Boolean networks, we recall and propose some definitions concerning the notion of functionality along with associated mathematical results.
Resumo:
Newborn neurons are generated in the adult hippocampus from a pool of self-renewing stem cells located in the subgranular zone (SGZ) of the dentate gyrus. Their activation, proliferation, and maturation depend on a host of environmental and cellular factors but, until recently, the contribution of local neuronal circuitry to this process was relatively unknown. In their recent publication, Song and colleagues have uncovered a novel circuit-based mechanism by which release of the neurotransmitter, γ-aminobutyric acid (GABA), from parvalbumin-expressing (PV) interneurons, can hold radial glia-like (RGL) stem cells of the adult SGZ in a quiescent state. This tonic GABAergic signal, dependent upon the activation of γ(2) subunit-containing GABA(A) receptors of RGL stem cells, can thus prevent their proliferation and subsequent maturation or return them to quiescence if previously activated. PV interneurons are thus capable of suppressing neurogenesis during periods of high network activity and facilitating neurogenesis when network activity is low.
Resumo:
OBJECTIVE: Standard cardiopulmonary bypass (CPB) circuits with their large surface area and volume contribute to postoperative systemic inflammatory reaction and hemodilution. In order to minimize these problems a new approach has been developed resulting in a single disposable, compact arterio-venous loop, which has integral kinetic-assist pumping, oxygenating, air removal, and gross filtration capabilities (CardioVention Inc., Santa Clara, CA, USA). The impact of this system on gas exchange capacity, blood elements and hemolysis is compared to that of a conventional circuit in a model of prolonged perfusion. METHODS: Twelve calves (mean body weight: 72.2+/-3.7 kg) were placed on cardiopulmonary bypass for 6 h with a flow of 5 l/min, and randomly assigned to the CardioVention system (n=6) or a standard CPB circuit (n=6). A standard battery of blood samples was taken before bypass and throughout bypass. Analysis of variance was used for comparison. RESULTS: The hematocrit remained stable throughout the experiment in the CardioVention group, whereas it dropped in the standard group in the early phase of perfusion. When normalized for prebypass values, both profiles differed significantly (P<0.01). Both O2 and CO2 transfers were significantly improved in the CardioVention group (P=0.04 and P<0.001, respectively). There was a slightly higher pressure drop in the CardioVention group but no single value exceeded 112 mmHg. No hemolysis could be detected in either group with all free plasma Hb values below 15 mg/l. Thrombocyte count, when corrected by hematocrit and normalized by prebypass values, exhibited an increased drop in the standard group (P=0.03). CONCLUSION: The CardioVention system with its concept of limited priming volume and exposed foreign surface area, improves gas exchange probably because of the absence of detectable hemodilution, and appears to limit the decrease in the thrombocyte count which may be ascribed to the reduced surface. Despite the volume and surface constraints, no hemolysis could be detected throughout the 6 h full-flow perfusion period.
Resumo:
The molecular mechanisms that control how progenitors generate distinct subtypes of neurons, and how undifferentiated neurons acquire their specific identity during corticogenesis, are increasingly understood. However, whether postmitotic neurons can change their identity at late stages of differentiation remains unknown. To study this question, we developed an electrochemical in vivo gene delivery method to rapidly manipulate gene expression specifically in postmitotic neurons. Using this approach, we found that the molecular identity, morphology, physiology and functional input-output connectivity of layer 4 mouse spiny neurons could be specifically reprogrammed during the first postnatal week by ectopic expression of the layer 5B output neuron-specific transcription factor Fezf2. These findings reveal a high degree of plasticity in the identity of postmitotic neocortical neurons and provide a proof of principle for postnatal re-engineering of specific neural microcircuits in vivo.
Resumo:
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. VIDEO ABSTRACT.
Resumo:
The Teggiolo zone is the sedimentary cover of the Antigorio nappe, one of the lowest tectonic units of the Penninic Central Alps. Detailed mapping, stratigraphic and structural analyses, and comparisons with less metamorphic series in several well-studied domains of the Alps, provide a new stratigraphic interpretation. The Teggiolo zone is comprised of several sedimentary cycles, separated by erosive surfaces and large stratigraphic gaps, which cover the time span from Triassic to Eocene. At Mid-Jurassic times it appears as an uplifted, partially emergent block, marking the southern limit of the main Helvetic basin (the Limiting South-Helvetic Rise LSHR). The main mass of the Teggiolo calcschists, whose base truncates the Triassic-Jurassic cycles and can erode the Antigorio basement, consists of fine-grained clastic sediments analogous to the deep-water flyschoid deposits of Late Cretaceous to Eocene age in the North-Penninic (or Valais s.l.) basins. Thus the Antigorio-Teggiolo domain occupies a crucial paleogeographic position, on the boundary between the Helvetic and Penninic realms: from Triassic to Early Cretaceous its affinity is with the Helvetic; at the end of Cretaceous it is incorporated into the North-Penninic basins. An unexpected result is the discovery of the important role played by complex formations of wildflysch type at the top of the Teggiolo zone. They contain blocks of various sizes. According to their nature, three different associations are distinguished that have specific vertical and lateral distributions. These blocks give clues to the existence of territories that have disappeared from the present-day level of observation and impose constraints on the kinematics of early folding and embryonic nappe emplacement. Tectonics produced several phases of superimposed folds and schistosities, more in the metasediments than in the gneissic basement. Older deformations that predate the amplification of the frontal hinge of the nappe generated the dominant schistosity and the km-wide Vanzèla isoclinal fold.
Resumo:
The aim of this retrospective study was to compare the clinical and radiographic results after TKA (PFC, DePuy), performed either by computer assisted navigation (CAS, Brainlab, Johnson&Johnson) or by conventional means. Material and methods: Between May and December 2006 we reviewed 36 conventional TKA performed between 2002 and 2003 (group A) and 37 navigated TKA performed between 2005 and 2006 (group B) by the same experienced surgeon. The mean age in group A was 74 years (range 62-90) and 73 (range 58-85) in group B with a similar age distribution. The preoperative mechanical axes in group A ranged from -13° varus to +13° valgus (mean absolute deviation 6.83°, SD 3.86), in group B from -13° to +16° (mean absolute deviation 5.35, SD 4.29). Patients with a previous tibial osteotomy or revision arthroplasty were excluded from the study. Examination was done by an experienced orthopedic resident independent of the surgeon. All patients had pre- and postoperative long standing radiographs. The IKSS and the WOMAC were utilized to determine the clinical outcome. Patient's degree of satisfaction was assessed on a visual analogous scale (VAS). Results: 32 of the 37 navigated TKAs (86,5%) showed a postoperative mechanical axis within the limits of 3 degrees of valgus or varus deviation compared to only 24 (66%) of the 36 standard TKAs. This difference was significant (p = 0.045). The mean absolute deviation from neutral axis was 3.00° (range -5° to +9°, SD: 1.75) in group A in comparison to 1.54° (range -5° to +4°, SD: 1.41) in group B with a highly significant difference (p = 0.000). Furthermore, both groups showed a significant postoperative improvement of their mean IKSS-values (group A: 89 preoperative to 169 postoperative, group B 88 to 176) without a significant difference between the two groups. Neither the WOMAC nor the patient's degree of satisfaction - as assessed by VAS - showed significant differences. Operation time was significantly higher in group B (mean 119.9 min.) than in group A (mean 99.6 min., p <0.000). Conclusion: Our study showed consistent significant improvement of postoperative frontal alignment in TKA by computer assisted navigation (CAS) compared to standard methods, even in the hands of a surgeon well experienced in standard TKA implantation. However, the follow-up time of this study was not long enough to judge differences in clinical outcome. Thus, the relevance of computer navigation for clinical outcome and survival of TKA remains to be proved in long term studies to justify the longer operation time. References 1 Stulberg SD. Clin Orth Rel Res. 2003;(416):177-84. 2 Chauhan SK. JBJS Br. 2004;86(3):372-7. 3 Bäthis H, et al. Orthopäde. 2006;35(10):1056-65.
Resumo:
OBJECTIVE: : To determine the influence of nebulizer types and nebulization modes on bronchodilator delivery in a mechanically ventilated pediatric lung model. DESIGN: : In vitro, laboratory study. SETTING: : Research laboratory of a university hospital. INTERVENTIONS: : Using albuterol as a marker, three nebulizer types (jet nebulizer, ultrasonic nebulizer, and vibrating-mesh nebulizer) were tested in three nebulization modes in a nonhumidified bench model mimicking the ventilatory pattern of a 10-kg infant. The amounts of albuterol deposited on the inspiratory filters (inhaled drug) at the end of the endotracheal tube, on the expiratory filters, and remaining in the nebulizers or in the ventilator circuit were determined. Particle size distribution of the nebulizers was also measured. MEASUREMENTS AND MAIN RESULTS: : The inhaled drug was 2.8% ± 0.5% for the jet nebulizer, 10.5% ± 2.3% for the ultrasonic nebulizer, and 5.4% ± 2.7% for the vibrating-mesh nebulizer in intermittent nebulization during the inspiratory phase (p < 0.01). The most efficient nebulizer was the vibrating-mesh nebulizer in continuous nebulization (13.3% ± 4.6%, p < 0.01). Depending on the nebulizers, a variable but important part of albuterol was observed as remaining in the nebulizers (jet and ultrasonic nebulizers), or being expired or lost in the ventilator circuit (all nebulizers). Only small particles (range 2.39-2.70 µm) reached the end of the endotracheal tube. CONCLUSIONS: : Important differences between nebulizer types and nebulization modes were seen for albuterol deposition at the end of the endotracheal tube in an in vitro pediatric ventilator-lung model. New aerosol devices, such as ultrasonic and vibrating-mesh nebulizers, were more efficient than the jet nebulizer.
Resumo:
The metabolic and respiratory effects of intravenous 0.5 M sodium acetate (at a rate of 2.5 mmol/min during 120 min) were studied in nine normal human subjects. O2 consumption (VO2) and CO2 production (VCO2) were measured continuously by open-circuit indirect calorimetry. VO2 increased from 251 +/- 9 to 281 +/- 9 ml/min (P < 0.001), energy expenditure increased from 4.95 +/- 0.17 kJ/min baseline to 5.58 +/- 0.16 kJ/min (P < 0.001), and VCO2 decreased nonsignificantly (211 +/- 7 ml/min vs. 202 +/- 7 ml/min, NS). The extrapulmonary CO2 loss (i.e., bicarbonate generation and excretion) was estimated at 48 +/- 5 ml/min. This observation is consistent with 1 mol of bicarbonate generated from 1 mol of acetate metabolized. Alveolar ventilation decreased from 3.5 +/- 0.2 l/min basal to 3.1 +/- 0.2 l/min (P < 0.001). The minute ventilation (VE) to VO2 ratio decreased from 22.9 +/- 1.3 to 17.6 +/- 0.9 l/l (P < 0.005), arterial PO2 decreased from 93.2 +/- 1.9 to 78.7 +/- 1.6 mmHg (P < 0.0001), arterial PCO2 increased from 39.2 +/- 0.7 to 42.1 +/- 1.1 mmHg (P < 0.0001), pH from 7.40 +/- 0.005 to 7.50 +/- 0.007 (P < 0.005), and arterial bicarbonate concentration from 24.2 +/- 0.7 to 32.9 +/- 1.1 (P < 0.0001). These observations indicate that sodium acetate infusion results in substantial extrapulmonary CO2 loss, which leads to a relative decrease of total and alveolar ventilation.
Resumo:
Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.
Resumo:
CAP1/Prss8 is a membrane-bound serine protease involved in the regulation of several different effectors, such as the epithelial sodium channel ENaC, the protease-activated receptor PAR2, the tight junction proteins, and the profilaggrin polypeptide. Recently, the V170D and the G54-P57 deletion mutations within the CAP1/Prss8 gene, identified in mouse frizzy (fr) and rat hairless (fr(CR)) animals, respectively, have been proposed to be responsible for their skin phenotypes. In the present study, we analyzed those mutations, revealing a change in the protein structure, a modification of the glycosylation state, and an overall reduction in the activation of ENaC of the two mutant proteins. In vivo analyses demonstrated that both fr and fr(CR) mutant animals present analogous reduction of embryonic viability, similar histologic aberrations at the level of the skin, and a significant decrease in the activity of ENaC in the distal colon compared with their control littermates. Hairless rats additionally had dehydration defects in skin and intestine and significant reduction in the body weight. In conclusion, we provided molecular and functional evidence that CAP1/Prss8 mutations are accountable for the defects in fr and fr(CR) animals, and we furthermore demonstrate a decreased function of the CAP1/Prss8 mutant proteins. Therefore, fr and fr(CR) animals are suitable models to investigate the consequences of CAP1/Prss8 action on its target proteins in the whole organism.