223 resultados para Alpha(1)-Adrenoceptors
em Université de Lausanne, Switzerland
Resumo:
These studies show that either central pharmacological blockade or genetic ablation of alpha(1B)-adrenoceptors markedly attenuates the behavioral activation caused by modafinil, implicating these receptors in the drug's action.
Resumo:
Recently, corticosteroid hormone-induced factor (CHIF) and the gamma-subunit, two members of the FXYD family of small proteins, have been identified as regulators of renal Na,K-ATPase. In this study, we have investigated the tissue distribution and the structural and functional properties of FXYD7, another family member which has not yet been characterized. Expressed exclusively in the brain, FXYD7 is a type I membrane protein bearing N-terminal, post-translationally added modifications on threonine residues, most probably O-glycosylations that are important for protein stabilization. Expressed in Xenopus oocytes, FXYD7 can interact with Na,K-ATPase alpha 1-beta 1, alpha 2-beta 1 and alpha 3-beta 1 but not with alpha-beta 2 isozymes, whereas, in brain, it is only associated with alpha 1-beta isozymes. FXYD7 decreases the apparent K(+) affinity of alpha 1-beta 1 and alpha 2-beta 1, but not of alpha 3-beta1 isozymes. These data suggest that FXYD7 is a novel, tissue- and isoform-specific Na,K-ATPase regulator which could play an important role in neuronal excitability.
Resumo:
A method allowing a clear separation of the different variants of desialylated alpha 1-acid glycoprotein (orosomucoid) has been developed using isoelectric focusing in immobilized pH gradients, supplemented with 8 M urea and 2% v/v 2-mercaptoethanol. Immunoblotting with two antibody-steps afforded high sensitivity and permitted the detection of about 700 pg of alpha 1-acid glycoprotein in a 20 microL plasma sample diluted 1:28 672. A one year old bloodstrain, kept at room temperature, could easily be phenotyped.
Resumo:
The plasma concentrations of alpha 1-acid glycoprotein (AAG), albumin, triglycerides, cholesterol, and total proteins, as well as the plasma binding of racemic, d-methadone, and l-methadone were measured in 45 healthy subjects. The AAG phenotypes and the concentrations of AAG variants were also determined. The measured free fractions for racemic, d-methadone, and l-methadone were, respectively, 12.7% +/- 3.3%, 10.0% +/- 2.9%, and 14.2% +/- 3.2% (mean +/- SD). A significant correlation was obtained between the binding ratio (B/F) for dl-methadone and the total AAG concentration (r = 0.724; p less than 0.001). A multiple stepwise regression analysis showed that AAG was the main explanatory variable for the binding of the racemate. When concentrations of AAG variants were considered, a significant correlation was obtained between the binding ratio of dl-methadone and orosomucoid2 A concentration (r = 0.715; p less than 0.001), a weak correlation between dl-methadone and orosomucoid1 S concentration (r = 0.494; p less than 0.001), and no correlation between dl-methadone and orosomucoid1 F1 concentration (r = 0.049; not significant). Similar findings were obtained with the enantiomers. This study shows the importance of considering not only total AAG but also concentrations of AAG variants when measuring the binding of methadone and possibly of other drugs in plasma.
Resumo:
Introduction: La disposition de l'imatinib (Glivec®) implique des systèmes connus pour de grandes différences inter-individuelles, et l'on peut s'attendre à ce que l'exposition à ce médicament varie largement d'un patient à l'autre. L'alpha-1-glycoprotéine acide (AAG), une protéine circulante liant fortement l'imatinib, représente l'un de ces systèmes. Objectif: Cette étude observationnelle visait à explorer l'influence de l'AAG plasmatique sur la pharmacocinétique de l'imatinib. Méthode: Une analyse de population a été effectuée avec le programme NONMEM sur 278 échantillons plasmatiques issus de 51 patients oncologiques. L'influence des taux d'AAG sur la clairance (CL) et le volume de distribution (Vd) a ainsi été étudiée. Résultats: Un modèle à un compartiment avec absorption de premier ordre a permis de décrire les données. Une relation hyperbolique entre taux d'AAG et CL ou Vd a été observée. Une approche mécanistique a donc été élaborée, postulant que seule la concentration libre subissait une élimination du premier ordre, et intégrant la constante de dissociation comme paramètre du modèle. Cette approche a permis de déterminer une CLlibre moyenne de 1310 l/h et un Vd de 301 l. Par comparaison, la CLtotale déterminée initialement était de 14 l/h. La CLlibre est affectée par le poids corporel et le type de pathologie. Qui plus est, ce modèle a permis d'estimer in vivo la constante d'association entre imatinib et AAG (5.5?106 l/mol), ainsi que la fraction libre moyenne de l'imatinib (1.1%). La variabilité inter-individuelle estimée pour la disposition de l'imatinib (17% sur CLlibre et 66% sur Vd) diminuait globalement de moitié avec le modèle incorporant l'impact de l'AAG. Discussion-conclusion: De tels résultats clarifient l'impact de la liaison protéinique sur le devenir de l'imatinib. Des taux élevés d'AAG ont été présumés représenter un facteur de résistance à l'imatinib. Toutefois, cela est peu probable, notre modèle prédisant que la concentration libre reste inchangée. D'un autre côté, s'il est un jour démontré que l'imatinib requiert un programme de suivi thérapeutique (TDM), la mesure des concentrations libres, ou la correction des concentrations totales en fonction des taux d'AAG, devraient être envisagées pour une interprétation précise des résultats.
Resumo:
Objectives: Considering the large inter-individual differences in the function of the systems involved in imatinib disposition, exposure to this drug can be expected to vary widely among patients. Among those known systems is alpha-1-acid glycoprotein (AGP), a circulating protein that strongly binds imatinib. This observational study aimed to explore the influence of plasma AGP on imatinib pharmacokinetics. Methods: A population pharmacokinetic analysis was performed using NONMEM based on 278 plasma samples from 51 oncologic patients, for whom both total imatinib and AGP plasma concentrations were measured. The influence of this biological covariate on oral clearance and volume of distribution was examined. Results: A one-compartment model with first-order absorption appropriately described the data. A hyperbolic relationship between plasma AGP levels and oral clearance, as well as volume of distribution was observed. A mechanistic approach was built up, postulating that only the unbound imatinib concentration was able to undergo first-order elimination through an unbound clearance process, and integrating the dissociation constant as a parameter in the model. This approach allowed determining an average (± SEM) free clearance of 1310 (± 172) L/h and a volume of distribution of 301 (± 23) L. By comparison, the total clearance previously determined was 14 (± 1) L/h. Free clearance was affected by body weight and pathology diagnosis. Moreover, this model provided consistent estimates of the association constant between imatinib and AGP (5.5?106 L/mol) and of the average in vivo free fraction of imatinib (1.1%). The variability observed (17% for free clearance and 66% for volume of distribution) was less than the one previously reported without considering AGP impact. AGP explained indeed about one half of the variability observed in total imatinib disposition. Conclusion: Such findings clarify in part the in vivo impact of protein binding on imatinib disposition and might raise again the question whether high levels of AGP could represent a resistance factor to imatinib. This remains however questionable, as it is not expected to affect free drug concentrations. On the other hand, would imatinib be demonstrated as a drug requiring therapeutic drug monitoring, either the measurement of free concentration or the correction of the total concentration by the actual AGP plasma levels should be considered for accurate interpretation of the results.
Resumo:
Binding studies have been performed between amitriptyline and i) native alpha 1-acid glycoprotein (AAG); ii) its desialylated form; iii) its two variants, S-AAG and F-AAG; and iv) a mixture of S-AAG and F-AAG. Scatchard analysis revealed the presence of two classes of binding sites on AAG. For native AAG, the first class (of high affinity) has an association constant (Ka1) of 1.5 x 10(6) L mol-1 and a number of binding sites per mole of protein (n1) of 0.25, while the second class (of low affinity) has a Ka2 of 3.2 x 10(4) L mol-1 and a n2 of 0.94. Similar data were found for desialylated AAG. S-AAG and F-AAG do not differ in their association constants measured with amitriptyline, but in their number of binding sites per mole of protein (n): S-AAG: n1 = 0.56, n2 = 0.52; F-AAG: n1 = 0.17, n2 = 0.71. These results confirm those of a previous study, in which a higher affinity of S-AAG towards various basic drugs in comparison with F-AAG has been found.
Resumo:
The adrenergic receptors (ARs) belong to the superfamily of membrane-bound G protein coupled receptors (GPCRs). Our investigation has focused on the structure-function relationship of the alpha 1b-AR subtype used as the model system for other GPCRs. Site-directed mutagenesis studies have elucidated the structural domains of the alpha 1b-AR involved in ligand binding, G protein coupling or desensitization. In addition, a combined approach using site-directed mutagenesis and molecular dynamics analysis of the alpha 1b-AR has provided information about the potential mechanisms underlying the activation process of the receptor, i.e. its transition from the 'inactive' to the 'active' conformation.
Resumo:
BACKGROUND AND PURPOSE: Alpha(1)-adrenoceptor antagonists are extensively used in the treatment of hypertension and lower urinary tract symptoms associated with benign prostatic hyperplasia. Among the side effects, ejaculatory dysfunction occurs more frequently with drugs that are relatively selective for alpha(1A)-adrenoceptors compared with other drugs of this class. This suggests that alpha(1A)-adrenoceptors may contribute to ejaculation. However, this has not been studied at the molecular level. EXPERIMENTAL APPROACH: The physiological contribution of each alpha(1)-adrenoceptor subtype was characterized using alpha(1)-adrenoceptor subtype-selective knockout (KO) mice (alpha(1A)-, alpha(1B)- and alpha(1D)-AR KO mice) since the subtype-specific drugs available are only moderately selective. We analysed the role of alpha(1)-adrenoceptors in the blood pressure and vascular response as well as ejaculation by determining these variables in alpha(1)-adrenoceptor subtype-selective KO mice and in mice with all their alpha(1)-adrenoceptor subtypes deleted (alpha(1)-AR triple-KO mice). KEY RESULTS: The pregnancy rate was reduced by 50% in alpha(1A)-adrenoceptor KO mice, and this reduction was dramatically enhanced in alpha(1)-adrenoceptor triple-KO mice. Contractile tension of the vas deferens in response to noradrenaline was markedly decreased in alpha(1A)-adrenoceptor KO mice, and this contraction was completely abolished in alpha(1)-adrenoceptor triple-KO mice. This attenuation of contractility was also observed in the electrically stimulated vas deferens. CONCLUSIONS AND IMPLICATIONS: These results demonstrate that alpha(1)-adrenoceptors, particularly alpha(1A)-adrenoceptors, are required for normal contractility of the vas deferens and consequent sperm ejaculation as well as having a function in fertility.
Resumo:
Sera from transgenic mice (TM) carrying human genes of alpha 1-acid glycoprotein (orosomucoid or ORM) have been analyzed by isoelectrofocusing and subsequent immunoblotting with antihuman ORM antibodies. With this technique it is possible to reveal selectively the human protein secreted in the TM sera. Orosomucoid bands present in TM sera have been compared with those of the most common human ORM phenotypes to correlate the products of specific genes to previously identified genetic variants. In this paper, we report the identification of the genes encoding for variants ORM1 F1 and ORM2 A, which are genes AGP-A and AGP-B/B' respectively. The nucleotide sequences of these genes are known; therefore a direct correlation between variants and specific amino acid sequences can be established.
Resumo:
Alpha1-Acid glycoprotein (AAG) or orosomucoid was purified to homogeneity from human plasma by a separate two-step method using chromatography on immobilized Cibacron Blue F3G-A to cross-linked agarose and chromatography on hydroxyapatite. The conditions for the pre-purification of AAG by chromatography on immobilized Cibacron Blue F3G-A were first optimized using different buffer systems with different pH values. The overall yield of the combined techniques was 80% and ca. 12 mg of AAG were purified from an initial total amount of ca. 15 mg in a ca. 40 ml sample of human plasma. This method was applied to the purification of AAG samples corresponding to the three main phenotypes of the protein (FI*S/A, F1/A and S/A), from individual human plasma previously phenotyped for AAG. A study by isoelectric focusing with carrier ampholytes showed that the microheterogeneity of the purified F1*S/A, F1/A and S/A AAG samples was similar to that of AAG in the corresponding plasma, thus suggesting that no apparent desialylation of the glycoprotein occurred during the purification steps. This method was also applied to the purification of AAG samples corresponding to rare phenotypes of the protein (F1/A*AD, S/A*X0 and F1/A*C1) and the interactions of these variants with immobilized copper(II) ions were then studied at pH 7, by chromatography on an iminodiacetate Sepharose-Cu(II) gel. It was found that the different variants encoded by the first of the two genes coding for AAG in humans (i.e. the F1 and S variants) interacted non-specifically with the immobilized ligand, whereas those encoded by the second gene of AAG (i.e. the A, AD, X0 and C1 variants) strongly bound to immobilized Cu(II) ions. These results suggested that chromatography on an immobilized affinity Cu(II) adsorbent could be helpful to distinguish between the respective products of the two highly polymorphic genes which code for human AAG.
Resumo:
The S- and F-forms of alpha-1 acid glycoprotein (AAG) variants have been isolated by isoelectric focusing with immobilines from commercially available AAG. In equilibrium dialysis experiments using a multicompartmental system, a higher affinity for various basic drugs has been found with S- in comparison with F-AAG: Amitriptyline, nortriptyline, imipramine, desipramine, trimipramine, methadone, thioridazine, clomipramine, desmethylclomipramine, and maprotiline. The selectivity (binding to S- vs. F-AAG) is the most pronounced for methadone and the lowest for thioridazine, while it is absent for the acidic drug mephenytoin.
Resumo:
The relative occurrence of genetic variants of human alpha 1-acid glycoprotein (AGP) in relation to changes in glycosylation was studied in sera of patients with burn injury, media of cytokine-treated primary cultures of human hepatocytes and Hep 3B cells, and sera of transgenic mice expressing the human AGP-A gene. It is concluded (i) that the glycosylation of AGP was not dependent on its genetic expression and (ii) that both the variants determined by the AGP-A gene as well as by the AGP-B/B' genes are increased after inflammation or treatment with interleukins 1 and 6.
Resumo:
Orosomucoid (ORM) phenotyping has been performed on 329 unrelated Swiss subjects, using immobilized pH gradients with 8 M urea and 2% v/v 2-mercaptoethanol followed by immunoblotting. After desialylation the band patterns of ORM confirmed that the polymorphism of the structural locus ORM1 is controlled by three codominant autosomal alleles (ORM1*F1, ORM1*S and ORM1*F2). One rare and one new allele were detected. The rare variant, tentatively assigned to the second structural locus ORM2, is observed in a cathodal position and named ORM2 B1. The new variant, tentatively assigned to the first structural locus ORM1, is observed in a region located between ORM1 S and ORM1 F2, and named ORM1 F3. Moreover, the pI values of the ORM variants have been measured accurately with Immobiline Dry Plates (LKB): they were found to be within the pH range 4.93-5.14.