14 resultados para Accessions
em Université de Lausanne, Switzerland
Resumo:
In many organisms, individuals behave more altruistically towards relatives than towards unrelated individuals. Here, we conducted a study to determine if the performance of Arabidopsis thaliana is influenced by whether individuals are in competition with kin or non-kin. We selected seven pairs of genetically distinct accessions that originated from local populations throughout Europe. We measured the biomass of one focal plant surrounded by six kin or non-kin neighbours in in vitro growth experiments and counted the number of siliques produced per pot by one focal plant surrounded by four kin or non-kin neighbours. The biomass and number of siliques of a focal plant were not affected by the relatedness of the neighbour. Depending on the accession, a plant performed better or worse in a pure stand than when surrounded by non-kin plants. In addition, whole-genome microarray analyses revealed that there were no genes differentially expressed between kin and non-kin conditions. In conclusion, our study does not provide any evidence for a differential response to kin vs non-kin in A. thaliana. Rather, the outcome of the interaction between kin and non-kin seems to depend on the strength of the competitive abilities of the accessions.
Resumo:
Ultra-high-throughput sequencing (UHTS) techniques are evolving rapidly and may soon become an affordable and routine tool for sequencing plant DNA, even in smaller plant biology labs. Here we review recent insights into intraspecific genome variation gained from UHTS, which offers a glimpse of the rather unexpected levels of structural variability among Arabidopsis thaliana accessions. The challenges that will need to be addressed to efficiently assemble and exploit this information are also discussed.
Resumo:
Soil acidification is a major agricultural problem that negatively affects crop yield. Root systems counteract detrimental passive proton influx from acidic soil through increased proton pumping into the apoplast, which is presumably also required for cell elongation and stimulated by auxin. Here, we found an unexpected impact of extracellular pH on auxin activity and cell proliferation rate in the root meristem of two Arabidopsis mutants with impaired auxin perception, axr3 and brx. Surprisingly, neutral to slightly alkaline media rescued their severely reduced root (meristem) growth by stimulating auxin signaling, independent of auxin uptake. The finding that proton pumps are hyperactive in brx roots could explain this phenomenon and is consistent with more robust growth and increased fitness of brx mutants on overly acidic media or soil. Interestingly, the original brx allele was isolated from a natural stock center accession collected from acidic soil. Our discovery of a novel brx allele in accessions recently collected from another acidic sampling site demonstrates the existence of independently maintained brx loss-of-function alleles in nature and supports the notion that they are advantageous in acidic soil pH conditions, a finding that might be exploited for crop breeding.
Resumo:
ABSTRACTIn contrast to animals, plants cannot move from their place of birth and, therefore, need to adapt to their particular habitat in order to survive. Thus, plant development is remarkably plastic, making plants an ideal system for the isolation of genes that account for intraspecific natural variation and possibly environmental adaptation. However, to date, this approach mostly identified null alleles and missed mutations with subtle effects. For instance, BREVIS RADIX (BRX) has been isolated as a key regulator of root growth through a naturally occurring loss-of-function allele in the Arabidopsis thaliana accession Uk-1 and is the founding member of a highly-conserved plant-specific gene family.In this work, we show that a strong selective pressure is acting on the BRX gene family and dates back before the monocot-dicot divergence. However, functional diversification is observed mainly in dicotyledon BRX family genes and is correlated with acceleration in the evolutionary rates in the N-terminal regions. Population genetic data revealed that BRX is highly conserved across Arabidopsis accessions and presents signatures of adaptation. Interestingly, a seven amino acid deletion polymorphism in BRX sequence was found in a few accessions, which seems to be responsible for their enhanced primary root growth. Nevertheless, BRX might not only be active in the root, as suggested by its expression in the shoot. Indeed, leaves and cotyledons of brx mutants are significantly smaller than wild- type. This phenotype is a direct consequence of the absence of BRX function in the shoot rather than an indirect effect of an altered root system growth. Interestingly, cotyledons of brx plants reflect the same physiological defects as the root. Moreover, phenotypes in BRX gain-of-function plants, such as epinastic leaves and increased epidermal cell size, could be associated with an increase in leaf brassinosteroid content.Collectively, these results indicate that BRX contributes to local adaptation by ubiquitously regulating plant growth, probably through the modulation of brassinosteroid biosynthesis.RÉSUMÉContrairement à la plupart des animaux, les plantes ne peuvent se mouvoir et doivent ainsi s'adapter à leur environnement pour survivre. Pour cette raison, elles représentent un système idéal pour l'identification de gènes contribuant à la variation naturelle intra- spécifique, ainsi qu'à l'adaptation. Cependant, cette approche a, jusqu'à présent, surtout permis d'isoler des allèles nuls et non des mutations conférant des effets plus subtiles. C'est le cas du gène Β REVIS RADIX (BRX), un régulateur clé de la croissance racinaire, qui a été identifié grâce à un allèle non-fonctionnel présent dans l'accession naturelle d'Arabidopsis thaliana Uk-1. BRX et ses homologues des plantes mono- et dicotylédones forment une famille très conservée et spécifique aux plantes.Dans ce travail, nous démontrons que la famille de gènes BRX est soumise à une forte pression de sélection qui remonte avant la divergence entre mono- et dicotylédones. Cependant, une diversification fonctionnelle a été observée chez les gènes des dicotylédones et corrèle avec une accélération de la vitesse d'évolution dans leur région N- terminale. Une analyse génétique de différentes accessions naturelles d'Arabidopsis a révélé que BRX est hautement conservé et présente des signatures d'adaptation. Remarquablement, un polymorphisme de délétion de sept acides aminés a été détecté dans quelques accessions et a pour conséquence une plus forte croissance de la racine primaire. Néanmoins, il semble que le rôle de BRX ne se limite pas qu'à la racine, comme indiqué par son expression dans les parties aériennes de la plante. En effet, les mutants brx présentent des cotylédons et des feuilles significativement plus petits que le type sauvage, une conséquence directe de l'absence d'activité de BRX dans ces organes. Nous avons aussi noté que les cotylédons des mutants brx, à l'instar des racines, ont une perception altérée de l'auxine et peuvent être complémentés par l'application exogène de brassinostéroïdes. De plus, dans des plantes présentant un gain de fonction BRX, les feuilles sont épinastiques et les cellules de leur épiderme plus grandes. Ces phénotypes sont accompagnés d'une augmentation de la concentration de brassinostéroïdes dans les feuilles. Conjointement, ces résultats démontrent que BRX contribue à une adaptation locale de la plante par la régulation générale de sa croissance, probablement en modulant la biosynthèse des brassinostéroïdes.
Resumo:
Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48,629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34,014 SNPs across species, with a Ka /Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28,236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes.
Resumo:
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5' regulatory sequence variation in the corresponding genes is indeed increased. However, approximately 42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.
Resumo:
Root system architecture is a trait that displays considerable plasticity because of its sensitivity to environmental stimuli. Nevertheless, to a significant degree it is genetically constrained as suggested by surveys of its natural genetic variation. A few regulators of root system architecture have been isolated as quantitative trait loci through the natural variation approach in the dicotyledon model, Arabidopsis. This provides proof of principle that allelic variation for root system architecture traits exists, is genetically tractable, and might be exploited for crop breeding. Beyond Arabidopsis, Brachypodium could serve as both a credible and experimentally accessible model for root system architecture variation in monocotyledons, as suggested by first glimpses of the different root morphologies of Brachypodium accessions. Whether a direct knowledge transfer gained from molecular model system studies will work in practice remains unclear however, because of a lack of comprehensive understanding of root system physiology in the native context. For instance, apart from a few notable exceptions, the adaptive value of genetic variation in root system modulators is unknown. Future studies should thus aim at comprehensive characterization of the role of genetic players in root system architecture variation by taking into account the native environmental conditions, in particular soil characteristics.
Resumo:
ABSTRACT: Identification of small polymorphisms from next generation sequencing short read data is relatively easy, but detection of larger deletions is less straightforward. Here, we analyzed four divergent Arabidopsis accessions and found that intersection of absent short read coverage with weak tiling array hybridization signal reliably flags deletions. Interestingly, individual deletions were frequently observed in two or more of the accessions examined, suggesting that variation in gene content partly reflects a common history of deletion events.
Resumo:
We report a new set of nine primer pairs specifically developed for amplification of Brassica plastid SSR markers. The wide utility of these markers is demonstrated for haplotype identification and detection of polymorphism in B. napus, B. nigra, B. oleracea, B. rapa and in related genera Arabidopsis, Camelina, Raphanus and Sinapis. Eleven gene regions (ndhB-rps7 spacer, rbcL-accD spacer, rpl16 intron, rps16 intron, atpB-rbcL spacer, trnE-trnT spacer, trnL intron, trnL-trnF spacer, trnM-atpE spacer, trnR-rpoC2 spacer, ycf3-psaA spacer) were sequenced from a range of Brassica and related genera for SSR detection and primer design. Other sequences were obtained from GenBank/EMBL. Eight out of nine selected SSR loci showed polymorphism when amplified using the new primers and a combined analysis detected variation within and between Brassica species, with the number of alleles detected per locus ranging from 5 (loci MF-6, MF-1) to 11 (locus MF-7). The combined SSR data were used in a neighbour-joining analysis (SMM, D (DM) distances) to group the samples based on the presence and absence of alleles. The analysis was generally able to separate plastid types into taxon-specific groups. Multi-allelic haplotypes were plotted onto the neighbour joining tree. A total number of 28 haplotypes were detected and these differentiated 22 of the 41 accessions screened from all other accessions. None of these haplotypes was shared by more than one species and some were not characteristic of their predicted type. We interpret our results with respect to taxon differentiation, hybridisation and introgression patterns relating to the 'Triangle of U'.
Resumo:
Quantitative trait loci analysis of natural Arabidopsis thaliana accessions is increasingly exploited for gene isolation. However, to date this has mostly revealed deleterious mutations. Among them, a loss-of-function allele identified the root growth regulator BREVIS RADIX (BRX). Here we present evidence that BRX and the paralogous BRX-LIKE (BRXL) genes are under selective constraint in monocotyledons as well as dicotyledons. Unexpectedly, however, whereas none of the Arabidopsis orthologs except AtBRXL1 could complement brx null mutants when expressed constitutively, nearly all monocotyledon BRXLs tested could. Thus, BRXL proteins seem to be more diversified in dicotyledons than in monocotyledons. This functional diversification was correlated with accelerated rates of sequence divergence in the N-terminal regions. Population genetic analyses of 30 haplotypes are suggestive of an adaptive role of AtBRX and AtBRXL1. In two accessions, Lc-0 and Lov-5, seven amino acids are deleted in the variable region between the highly conserved C-terminal, so-called BRX domains. Genotyping of 42 additional accessions also found this deletion in Kz-1, Pu2-7, and Ws-0. In segregating recombinant inbred lines, the Lc-0 allele (AtBRX(Lc-0)) conferred significantly enhanced root growth. Moreover, when constitutively expressed in the same regulatory context, AtBRX(Lc-0) complemented brx mutants more efficiently than an allele without deletion. The same was observed for AtBRXL1, which compared with AtBRX carries a 13 amino acid deletion that encompasses the deletion found in AtBRX(Lc-0). Thus, the AtBRX(Lc-0) allele seems to contribute to natural variation in root growth vigor and provides a rare example of an experimentally confirmed, hyperactive allelic variant.
Resumo:
Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing.
Resumo:
Contrairement aux animaux, les plantes sont des organismes sessiles qui ne possèdent pas de mécanismes de fuite quand les conditions environnementales ne sont plus optimales. Les plantes sont physiquement ancrées à l'endroit où elles ont germées et aux conditions environnementales qui parfois peuvent être extrêmes. Les possibilités d'acclimatation de différentes espèces, parfois même de groupes de plantes au sein d'une même espèce, peuvent varier mais repose sur une adaptation génétique de la plante. L'adaptation est un long processus qui repose sur l'apparition spontanée de mutations génétiques, leur mise à l'épreuve face aux conditions environnementales, et dans le cas où la mutation a un impact positif sur la survie dans cet habitat particulier, elle sera maintenue dans une population donnée de plantes. De telles populations, appelées écotypes, sont le matériel de départ pour la découverte de gènes qui induisent un bénéfice pour la plante dans un environnement donné. La plante la plus étudiée en biologie moléculaire est Arabidopsis thaliana, l'arabette des prés. Dans une étude précédente, les racines d'écotypes naturels d'Arabidopsis ont été comparées et un écotype, Uk-1, avait le système racinaire le plus particulier. Cet écotype possède des racines beaucoup plus courtes et plus ramifiées que tous les autres écotypes. Des analyses plus poussées ont montré qu'une seule mutation dans un gène était la cause de ce phénotype, le gène BREVIS RADIX (BRX), mot latin signifiant 'racine courte'. Bien que l'on connaisse le gène BRX, on connaît finalement peu de choses sur son importance adaptative. Dans cette étude, nous avons montré que la mutation dans le gène BRX rend la plante plus résistante aux sols acides. Dans l'optique de mieux comprendre cette valeur adaptative du mutant brx, nous avons analysé dans quels tissus le gène BRX jouait un rôle important. Nous avons pu mettre en évidence que BRX est important pour le développement du protophloème. Le protophloème est un élément du système vasculaire de la plante. En général, les plantes supérieures possèdent deux systèmes de transport à longue distance. L'un d'eux, appelé xylème, transporte l'eau et les nutriments absorbés du sol par les racines vers les feuilles. Les feuilles sont le siège du processus de photosynthèse au cours duquel sont produits des sucres qui devront être distribués partout dans les autres parties de la plante. Le tissu cellulaire chargé de livrer les produits de la photosynthèse, ainsi que les régulateurs de croissance, est le phloème. Ce dernier regroupe le métaphloème et le protophloème. Le protophloème est essentiel pour la livraison des sucres synthétisés ainsi que des signaux de croissance aux pointes des racines, centres organogéniques responsables de la production de nouvelles cellules durant la phase de croissance de la racine. La structure du protophloème peut être décrite comme des tubes continus, vides et résistants, faits de cellules spécialisées qui permettent un transport efficace et rapide. Nous avons montré que dans les mutants brx ces canaux de transports sont discontinus car certaines cellules n'ont pas terminé leur cycle de différenciation. Ces cellules obstruent le conduit ce qui fait que les sucres et les signaux de croissance, comme l'auxine, ne peuvent plus être transportés aux méristèmes. En conséquence, la prolifération de l'activité des méristèmes est compromise, ce qui explique les racines courtes. Au lieu d'être délivré aux méristèmes, l'auxine se concentre en amont des méristèmes où cela provoque l'apparition de nouvelles racines branchées et, très probablement, l'activation des pompes à protons. Sur des sols acides, la concentration en ion H+ est très élevée. Ces ions entrent dans les cellules de la racine par diffusion et perturbent notablement la croissance des racines et de la plante en général. Si les cellules de la racine possédaient des pompes à protons hyperactives, elles seraient capable d'évacuer le surplus d'ions H+ en dehors de la cellule, ce qui leur assurerait de meilleures chances de survie sur sols acides. De fait, le mutant brx est capable d'acidifier le milieu de culture dans lequel il est cultivé plus efficacement que la plante sauvage. Ce mutant est également capable de donner plus de progéniture sur ce type de milieu de croissance que les plantes sauvages. Finalement, nous avons trouvé d'autres mutants brx en milieu naturel poussant sur sols acides, ce qui suggère fortement que la mutation du gène BRX est une des causes de l'adaptation aux sols acides. -- Plants as sessile organisms have developed different mechanisms to cope with the complex environmental conditions in which they live. Adaptation is the process through which traits evolve by natural selection to functionally improve in a given environmental context. An adaptation to the environment is characterized by the genetic changes in the entire populations that have been fixed by natural selection over many generations. BREVIS RADIX (BRX) gene was found through natural Arabidopsis accessions screen and was characterized as a root growth regulator since loss-of-function mutants exhibit arrested post-embryonic primary root growth in addition to a more branched root system. Although brx loss-of-function causes a complete alteration in root architecture, BRX activity is only required in the root vasculature, in particular in protophloem cell file. Protophloem is a part of the phloem transport network and is responsible for delivery of photo-assimilates and growth regulators, coming from the shoot through mature phloem component - metaphloem, to the all plant primary meristems. In order to perform its function, protophloem is the first cell file to differentiate within the root meristem. During this process, protophloem cells undergo a partial programmed cell death, during which they build a thicker cell wall, degrade nucleus and tonoplast while plasma membrane stays functional. Interestingly, protophloem cells enter elongation process only after differentiation into sieve elements is completed. Here we show that brx mutants fail to differentiate protophloem cell file properly, a phenotype that can be distinguished by a presence of a "gap" cells, non-differentiated cells between two flanking differentiated cells. Discontinuity of protophloem differentiation in brx mutants is considered to be a consequence of local hyperactivity of CLAVATA3/EMBRYO SURROUNDING REGION 45 (CLE45) - BARELY ANY MERISTEM 3 (BAM3) signaling module. Interestingly, a CLE45 activity, most probably at the level of receptor binding, can be modulated by apoplastic pH. Altogether, our results imply that the activity of proton pumps, expressed in non-differentiated cells of protophloem, must be maintained under certain threshold, otherwise CLE45-BAM3 signaling pathway will be stimulated and in turn protophloem will not differentiate. Based on vacuolar morphology, a premature cell wall acidification in brx mutants stochastically prevents the protophloem differentiation. Only after protophloem differentiates, proton pumps can be activated in order to acidify apoplast and to support enucleated protophloem multifold elongation driven by surrounding cells growth. Finally, the protophloem differentiation failure would result in an auxin "traffic jam" in the upper parts of the root, created from the phloem-transported auxin that cannot be efficiently delivered to the meristem. Physiologically, auxin "leakage" from the plant vasculature network could have various consequences, since auxin is involved in the regulation of almost every aspect of plant growth and development. Thus, given that auxin stimulates lateral roots initiation and growth, this scenario explains more branched brx root system. Nevertheless, auxin is considered to activate plasma membrane proton pumps. Along with this, it has been shown that brx mutants acidify media much more than the wild type plants do, a trait that was proposed as an adaptive feature of naturally occurring brx null alleles in Arabidopsis populations found on acidic soils. Additionally, in our study we found that most of accessions originally collected from acidic sampling sites exhibit hypersensitivity to CLE45 treatment. This implies that adaptation of plants to acidic soil involves a positive selection pressure against upstream negative regulators of CLE45-BAM3 signaling, such as BRX. Perspective analysis of these accessions would provide more profound understanding of molecular mechanisms underlying plant adaptation to acidic soils. All these results are suggesting that targeting of the factors that affect protophloem differentiation is a good strategy of natural selection to change the root architecture and to develop an adaptation to a certain environment. -- Les plantes comme organismes sessiles ont développé différents mécanismes pour s'adapter aux conditions environnementales complexes dans lesquelles elles vivent. L'adaptation est le processus par lequel des traits vont évoluer via la sélection naturelle vers une amélioration fonctionnelle dans un contexte environnemental donné. Une adaptation à l'environnement est caractérisée par des changements génétiques dans des populations entières qui ont été fixés par la sélection naturelle sur plusieurs générations. Le gène BREVIS RADIX (BRX) a été identifié dans le crible d'une collection d'accessions naturelles d'Arabidopsis et a été caractérisé comme un régulateur de la croissance racinaire étant donné que le mutant perte-de-fonction montre une croissance racinaire primaire arrêtée au stade post-embryonnaire et présente de plus un système racinaire plus ramifié que la plante sauvage. Bien que le mutant perte-de-fonction brx cause une altération complète de l'architecture racinaire, l'activité de BRX n'est requise que dans la vascularisation racinaire, en particulier au niveau du protophloème. Le protophloème est un composant du réseau de transport du phloème et est responsable du transit des dérivés de la photosynthèse ainsi que des régulateurs de croissances, venant de la partie aérienne par le phloème mature (métaphloème) vers tous les méristèmes primaires de la plante. Pour pouvoir réaliser sa fonction, le protophloème est la première file de cellules à se différencier à l'intérieur du méristème de la racine. Pendant ce processus, les cellules du protophloème subissent une mort cellulaire programmée partielle durant laquelle elles épaississent leur paroi cellulaire, dégradent le noyau et le tonoplaste tandis que la membrane plasmique demeure fonctionnelle. De manière intéressante, les cellules du protophloème entament le processus d'allongement seulement après que la différenciation en tubes criblés soit complète. Ce travail montre que le mutant brx est incapable de mener à bien la différenciation de la file de cellules du protophloème, phénotype qui peut être visualisé par la présence de cellules 'trous', de cellules non différenciées entourées de deux cellules différenciées. La discontinuité de la différenciation du phloème dans le mutant brx est considérée comme la conséquence de l'hyperactivité localisée du module de signalisation CLA VA TA3/EMBRYO SURROUNDING REGION 45 (CLE45) - BARELY ANY MERISTEM 3 (BAM3). De manière intéressante, l'activité de CLE45, très probablement au niveau de la liaison avec le récepteur, peut être modulé par le pH apoplastique. Pris ensemble, nos résultats impliquent que l'activité des pompes à protons, actives dans les cellules non différenciées du protophloème, doit être maintenue en dessous d'un certain seuil autrement la cascade de signalisation CLE45-BAM3 serait stimulée, en conséquence de quoi le protophloème ne pourrait se différencier. D'après la morphologie vacuolaire, une acidification prématurée de la paroi cellulaire dans le mutant brx empêche la différenciation du protophloème de manière stochastique. Une fois que le protophloème se différencie, les pompes à protons peuvent alors être activées afin d'acidifier l'apoplaste et ainsi faciliter l'allongement des cellules énuclées du protophloème, entraînées par la croissance des cellules environnantes. Finalement, la différenciation défectueuse du protophloème produit une accumulation d'auxine dans la partie supérieure de la racine car le phloème ne peut plus acheminer efficacement l'auxine au méristème. Physiologiquement, la 'fuite' d'auxine à partir du réseau vasculaire de la plante peut avoir des conséquences variées puisque l'auxine est impliquée dans la régulation de la majorité des aspects de la croissance et développement de la plante. Etant donné que l'auxine stimule l'initiation et développement des racines latérales, ce scénario pourrait expliquer le système racinaire plus ramifié du mutant brx. En plus, l'auxine est considérée comme un activateur des pompes à protons. Par ailleurs, nous avons montré que les mutants brx ont la capacité d'acidifier le milieu plus efficacement que les plantes sauvages, une caractéristique des populations sauvages <¥Arabidopsis poussant sur des sols acides et contenant les allèles délétés brx. De plus, dans nos résultats nous avons mis en évidence que la plupart des accessions collectées originellement sur des sites acidophiles montre une hypersensibilité au traitement par CLE45. Ceci implique que l'adaptation des plantes aux sols acides repose sur la pression de sélection positive à rencontre des régulateurs négatifs de CLE45- BAM3, situés en amont de la cascade, tel le produit du gène BRX. Les analyses de ces accessions pourraient aboutir à une meilleure compréhension des mécanismes moléculaires responsables de l'adaptation des plantes aux sols acides. Tous nos résultats suggèrent que le ciblage des facteurs affectant la différenciation du protophloème serait une stratégie gagnante dans la sélection naturelle pour changer l'architecture de la racine et ainsi s'adapter efficacement à un nouvel environnement.
Resumo:
BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.
Resumo:
The hypothesis that constitutive and inducible plant resistance against herbivores should trade-off because they use the same resources and impose costs to plant fitness has been postulated for a long time. Negative correlations between modes of deployment of resistance and defences have been observed across and within species in common garden experiments. It was therefore tested whether that pattern of resistance across genotypes follows a similar variation in patterns of gene expression and chemical defence production. Using the genetically tractable model Arabidopsis thaliana and different modes of induction, including the generalist herbivore Spodoptera littoralis, the specialist herbivore Pieris brassicae, and jasmonate application, constitutive and inducibility of resistance was measured across seven A. thaliana accessions that were previously selected based on constitutive levels of defence gene expression. According to theory, it was found that modes of resistance traded-off among accessions, particularly against S. littoralis, in which accessions investing in high constitutive resistance did not increase it substantially after attack and vice-versa. Accordingly, the average expression of eight genes involved in glucosinolate production negatively predicted larval growth across the seven accessions. Glucosinolate production and genes related to defence induction on healthy and herbivore-damaged plants were measured next. Surprisingly, only a partial correlation between glucosinolate production, gene expression, and the herbivore resistance results was found. These results suggest that the defence outcome of plants against herbivores goes beyond individual molecules or genes but stands on a complex network of interactions.