113 resultados para ATP release

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that the step of DNA strand exchange during RecA-mediated recombination reaction can occur equally efficiently in the presence or absence of ATP hydrolysis. The polarity of strand exchange is the same when instead of ATP its non-hydrolyzable analog adenosine-5'-O-(3-thiotriphosphate) is used. We show that the ATP dependence of recombination reaction is limited to the post-exchange stages of the reactions. The low DNA affinity state of RecA protomers, induced after ATP hydrolysis, is necessary for the dissociation of RecA-DNA complexes at the end of the reaction. This dissociation of RecA from DNA is necessary for the release of recombinant DNA molecules from the complexes formed with RecA and for the recycling of RecA protomers for another round of the recombination reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chaperonins are cage-like complexes in which nonnative polypeptides prone to aggregation are thought to reach their native state optimally. However, they also may use ATP to unfold stably bound misfolded polypeptides and mediate the out-of-cage native refolding of large proteins. Here, we show that even without ATP and GroES, both GroEL and the eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) can unfold stable misfolded polypeptide conformers and readily release them from the access ways to the cage. Reconciling earlier disparate experimental observations to ours, we present a comprehensive model whereby following unfolding on the upper cavity, in-cage confinement is not needed for the released intermediates to slowly reach their native state in solution. As over-sticky intermediates occasionally stall the catalytic unfoldase sites, GroES mobile loops and ATP are necessary to dissociate the inhibitory species and regenerate the unfolding activity. Thus, chaperonin rings are not obligate confining antiaggregation cages. They are polypeptide unfoldases that can iteratively convert stable off-pathway conformers into functional proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuron-astrocyte reciprocal communication at synapses has emerged as a novel signalling pathway in brain function. Astrocytes sense the level of synaptic activity and, in turn, influence its efficacy through the regulated release of 'gliotransmitters' such as glutamate, ATP or D-serine. A calcium-dependent exocytosis is proposed to drive the release of gliotransmitters but its existence is still debated. Over the last years, we have been studying the molecular determinants governing D-serine release from glia using different approaches. Using a novel bioassay for D-serine, we have been able to show that D-serine release occurs mainly through a calcium- and SNARE proteindependent mechanism just supporting the idea that this amino acid is released by exocytosis from glia. We next have pursued our exploration by confocal imaging and tracking of the exocytotic routes for Dserine- mediated gliotransmission and have shown that D-serine releasable pools are confined to synaptobrevin2/cellubrevin-bearing vesicles. To shed light onto the mechanisms controlling the storage and the release of gliotransmitters and namely D-serine, we have developed a new method for the immunoisolation of synaptobrevin 2- positive vesicles from rat cortical astrocytes in culture while preserving their content in gliotransmitters. The purified organelles are clear round shape vesicles of excellent purity with homogeneous size (40 nm) as judged by electron microscopy. Immunoblotting analysis revealed that isolated vesicles contain most of the major proteins already described for neuron-derived vesicles like synaptic vesicle protein 2 (SV2) and the proton pump H?-ATPase. In addition, we have analyzed the content for various amino acids of these vesicles by means of chiral capillary electrophoresis coupled to laser-induced fluorescence detection. The purified vesicles contain large amount of D-serine. We also detect peaks corresponding to unidentified compounds that may correspond to others amino acids. Postembedding immunogold labelling of the rat neocortex further revealed the expression of D-serine in astrocytes processes contacting excitatory synapses. Finally, we have examined the uptake properties for Dserine and glutamate inside the isolated glial vesicles. Our results provide significant support for the existence of an uptake system for D-serine in secretory glial vesicles and for the storage of chemical substances like D-serine and glutamate. 11th International Congress on Amino Acids, Peptides and Proteins 763 123

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Adobe (R) animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na+ and K+ translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P-2c-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E-1/E-2-ATPase as it undergoes conformational changes between the E-1 and E-2 forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger's scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure function relationship. The movements of the various domains within the (Na, K)-ATPase alpha-subunit illustrate the conformational changes that occur during Na+ and K+ translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the "core engine" of the pump, with respect to ATP binding, cation transport, and ADP and P-i release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current in vitro fertilisation (IVF) practice requires synchronisation between the¦environment of cultured oocytes and embryos and the surroundings to what they would have¦been exposed to in vivo. Commercial, sequential media follow this requirement but their exact¦composition is not available. We have compared two widely used IVF culture media systems using¦the two choriocarcinoma cell lines JEG-3 and BeWo. The two hormones hCG and progesterone¦were determined in the culture supernatants as endpoints. In both cell lines, but in a more¦pronounced way in JEG-3, progesterone rather than hCG production was stimulated, and a¦higher hormone release was observed in the fertilisation than in the cleavage media. Differences¦between manufacturers were small and did not favour one system over the other. We conclude¦that both sequential media systems can be equally well used in current IVF laboratory practice.¦© 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was found recently that locomotor and rewarding effects of psychostimulants and opiates were dramatically decreased or suppressed in mice lacking alpha1b-adrenergic receptors [alpha1b-adrenergic receptor knock-outs (alpha1bAR-KOs)] (Drouin et al., 2002). Here we show that blunted locomotor responses induced by 3 and 6 mg/kg d-amphetamine in alpha1bAR-KO mice [-84 and -74%, respectively, when compared with wild-type (WT) mice] are correlated with an absence of d-amphetamine-induced increase in extracellular dopamine (DA) levels in the nucleus accumbens of alpha1bAR-KO mice. Moreover, basal extracellular DA levels in the nucleus accumbens are lower in alpha1bAR-KO than in WT littermates (-28%; p < 0.001). In rats however, prazosin, an alpha1-adrenergic antagonist, decreases d-amphetamine-induced locomotor hyperactivity without affecting extracellular DA levels in the nucleus accumbens, a finding related to the presence of an important nonfunctional release of DA (Darracq et al., 1998). We show here that local d-amphetamine releases nonfunctional DA with the same affinity but a more than threefold lower amplitude in C57BL6/J mice than in Sprague Dawley rats. Altogether, this suggests that a trans-synaptic mechanism amplifies functional DA into nonfunctional DA release. Our data confirm the presence of a powerful coupling between noradrenergic and dopaminergic neurons through the stimulation of alpha1b-adrenergic receptors and indicate that nonfunctional DA release is critical in the interpretation of changes in extracellular DA levels. These results suggest that alpha1b-adrenergic receptors may be important therapeutic pharmacological targets not only in addiction but also in psychosis because most neuroleptics possess anti-alpha1-adrenergic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of pancreatic glucagon secretion has been reported to be mediated by glucose, insulin and somatostatin. As no human pancreatic alpha-cell lines are available to study in vitro the relative importance of insulin and glucose in the control of pancreatic glucagon release, we investigated a patient presenting with a malignant glucagonoma who underwent surgical resection of the tumour. Functional somatostatin receptors were present as octreotide administration decreased basal glucagon and insulin secretion by 52 and 74%, respectively. The removed tumour was immunohistochemically positive for glucagon, chromogranin A and pancreatic polypeptide but negative for insulin, gastrin and somatostatin. The glucagonoma cells were also isolated and cultured in vitro. Incubation experiments revealed that change from high (10 mM) to low (1 mM) glucose concentration was unable to stimulate glucagon secretion. A dose-dependent inhibition of glucagon release by insulin was however, observed at low glucose concentration. These findings demonstrate that insulin could inhibit glucagon secretion in vitro in the absence of elevated glucose concentrations. These data suggest, as observed in vivo and in vitro in several animal studies, that glucopenia-induced glucagon secretion in humans is not mediated by a direct effect of low glucose on alpha-cells but possibly by a reduction of insulin-mediated alpha-cell suppression and/or an indirect neuronal stimulation of glucagon release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes participate in information processing by actively modulating synaptic properties via gliotransmitter release. Various mechanisms of astrocytic release have been reported, including release from storage organelles via exocytosis and release from the cytosol via plasma membrane ion channels and pumps. It is still not fully clear which mechanisms operate under which conditions, but some of them, being Ca(2+)-regulated, may be physiologically relevant. The properties of Ca(2+)-dependent transmitter release via exocytosis or via ion channels are different and expected to produce different extracellular transmitter concentrations over time and to have distinct functional consequences. The molecular aspects of these two release pathways are still under active investigation. Here, we discuss the existing morphological and functional evidence in support of either of them. Transgenic mouse models, specific antagonists and localization studies have provided insight into regulated exocytosis, albeit not in a systematic fashion. Even more remains to be uncovered about the details of channel-mediated release. Better functional tools and improved ultrastructural approaches are needed in order fully to define specific modalities and effects of astrocytic gliotransmitter release pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeting mTOR (mammalian target of rapamycin) is an effective approach in the treatment of advanced RCC (renal cell carcinoma). Rapamycin-like drugs (rapalogues) have shown clinical activities and have been approved for the treatment of RCC. Recently, with the development of ATP-competitive inhibitors of mTOR, therapies targeting mTOR have entered a new era. Here, we discuss the biological relevance of blocking mTOR in RCC and review the mechanisms of action of rapalogues in RCC. We also advance some perspectives on the use of ATP-competitive inhibitors of mTOR in RCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: After treatment with heat-killed Propionibacterium acnes mice show dense hepatic granuloma formation. Such mice develop liver injury in an interleukin (IL)-18-dependent manner after challenge with a sublethal dose LPS. As previously shown, LPS-stimulated Kupffer cells secrete IL-18 depending on caspase-1 and Toll-like receptor (TLR)-4 but independently of its signal adaptor myeloid differentiation factor 88 (MyD88), suggesting importance of another signal adaptor TIR domain-containing adapter inducing IFN-beta (TRIF). Nalp3 inflammasome reportedly controls caspase-1 activation. Here we investigated the roles of MyD88 and TRIF in P. acnes-induced hepatic granuloma formation and LPS-induced caspase-1 activation for IL-18 release. METHODS: Mice were sequentially treated with P. acnes and LPS, and their serum IL-18 levels and liver injuries were determined by ELISA and ALT/AST measurement, respectively. Active caspase-1 in LPS-stimulated Kupffer cells was determined by Western blotting. RESULTS: Macrophage-ablated mice lacked P. acnes-induced hepatic granuloma formation and LPS-induced serum IL-18 elevation and liver injury. Myd88(-/-) Kupffer cells, but not Trif(-/-) cells, exhibited normal caspase-1 activation upon TLR4 engagement in vitro. Myd88(-/-) mice failed to develop hepatic granulomas after P. acnes treatment and liver injury induced by LPS challenge. In contrast, Trif(-/-) mice normally formed the hepatic granulomas, but could not release IL-18 or develop the liver injury. Nalp3(-/-) mice showed the same phenotypes of Trif(-/-) mice. CONCLUSIONS: Propionibacterium acnes treatment MyD88-dependently induced hepatic granuloma formation. Subsequent LPS TRIF-dependently activated caspase-1 via Nalp3 inflammasome and induced IL-18 release, eventually leading to the liver injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nicotine has been shown to stimulate the release of vasopressin and to cause significant hemodynamic changes. The mechanisms leading to enhanced vasopressin secretion and the vascular consequences of the high plasma vasopressin levels during nicotine infusion have not yet been determined. Therefore, the purposes of the present study were 1) to examine in normal conscious rats the role of opioid peptides in the nicotine-induced increase in plasma vasopressin levels and 2) to assess the role of vasopressin in the hemodynamic effects of nicotine (20 micrograms/min for 15 min) using a specific V1 antagonist of the vascular actions of vasopressin. Plasma vasopressin levels were significantly increased in the nicotine-treated animals (39.5 +/- 10 vs. 3.7 +/- 0.6 pg/ml in the controls, P less than .01). Pretreatment with naloxone, an antagonist of opioids at their receptors, did not reduce the vasopressin levels (47.7 +/- 9 pg/ml). Nicotine also increased mean blood pressure (122.5 +/- 2.5 to 145.2 +/- 3.3 mm Hg, P less than .01) and decreased heart rate (461 +/- 6 to 386 +/- 14.5 beats/min, P less than .05). Administration of the vasopressin V1 antagonist before the nicotine infusion did not affect the systemic hemodynamics or the regional blood flow distribution, as assessed by radiolabeled microspheres. Thus, these results suggest that the nicotine-induced secretion of vasopressin is not mediated by opioid receptors and that the high plasma vasopressin levels do not exert any significant hemodynamic effect on cardiac output or blood flow distribution.