10 resultados para 2.5-D occupancy-elevation grid
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. RESULTS: The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. CONCLUSION: The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel.
Resumo:
Application of wild-type or genetically-modified bacteria to the soil environment entails the risk of dissemination of these organisms to the groundwater. To measure vertical transport of bacteria under natural climatic conditions, Pseudomonas fluorescens strain CHA0 was released together with bromide as a mobile tracer at the surface of large outdoor lysimeters. Two experiments, one starting in autumn 1993 and the other in spring 1994 were performed. Shortly after a heavy rainfall in late spring 1994, the released bacteria were detected for the first time in effluent water from the 2.5-m-deep lysimeters in both experiments, i.e. 210 d and 21 d, respectively, after inoculation. Only a 10−9 to 10−8 fraction of the inoculum was recovered as culturable cells in the effluent water, but a larger fraction of the CHA0 cells was in a non-culturable state as detected with immunofluorescence microscopy. As much as 50% of the mobile tracer percolated through the lysimeters, indicating that, compared with bromide, bacterial cells were retained in soil. In the second part of this study, persistence of CHA0 in groundwater microcosms consisting of lysimeter effluent water was studied for 380 d. Survival of the inoculant as culturable cells was better under anaerobic than under aerobic conditions. However, a large fraction of the cells became non-culturable in both cases. When the experiment was performed with filter-sterilized effluent water, the total count of introduced bacteria did not decline with time. In conclusion, the biocontrol strain was transported in low numbers to a potential groundwater level under natural climatic conditions, but could persist for an extended period in groundwater microcosms.
Resumo:
Background/Aim: Cocktail approach is generally preferred to individual administration of probes in order to characterize the activity of multiple enzymes. However, cocktail strategy has several drawbacks such as drug-drug interactions, tolerability and toxicity. Hence, there is a need to develop cocktails using low doses of probes. Our aim was to investigate whether the simultaneous oral administration of microdoses of midazolam (MDZ) and dextromethorphan (DEM) can be used to assess the simultaneous activities of CYP3A and CYP2D6. Methods: As part of a 5 arm randomized cross-over control trial on the analgesic efficacy of oxycodone, ten healthy young non-smoking males received the following combinations of drugs: Quinidine (Q)+ ketoconazole (K) or Q+placebo (P) or K+P or P+P. In all cases MDZ (0.075 mg) and DEM (2.5 mg) were administrated 1 hour after Q, K or P. CYP2D6 and CYP3A activities were determined after urine collection during 8 hours (ratio DEM/DOR), and a blood sample (EDTA) after 30 min (ratio 1-OH-MDZ/MDZ). DEM and DOR analysis was performed using LC-fluorescence. MDZ and 1-OH-MDZ determination was performed using GC-MS. Allele's variants of CYP2D6 were detected using the AmpliChipTMCYP450 (Roche). Results: CYP2D6 genotype predicted 1 poor (PM), 1 intermediate (IM), 7 extensive (EM) and 2 ultra rapid (UM) metabolizers. A good correlation was obtained between the predicted and the measured phenotypes except for 1 EM phenotyped as UM. Two duplications for alleles *41/*41xN and *1/*2xN were detected and the two volunteers were phenotyped as UM. A potent inhibition of CYP2D6 or CYP3A4 was obtained when Q or K were used. Mean metabolic ratio DEM/DOR in P and K groups were 0.015 (±0.028) and 0.015 (±0.019). It significantly increased in Q and QK groups (0.668 (±0.676) and 0.743 (±1.038)). Mean 1-OH-MDZ/MDZ in P, Q were 2.73 (±1.05) and 2.55 (±1.40) while it significantly decreased in K and QK groups (0.11 (±0.05), 0.10 (±0.05)). Moreover, there were no statistically significant differences between QK and K sessions for CYP3A and between QK and Q for CYP2D6 which indicate that there is no interaction between the two metabolic pathways. Conclusion: Simultaneous assessment of CYP3A and CYP2D6 activities can be obtained by low oral doses (micro-cocktail) of MDZ and DEM. Specific inhibitors such as Q or K modulates selectively CYP2D6 or CYP3A activities.
Resumo:
We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 x 1 m digital elevation model, and a 15 x 15 m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m(-3), with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m-3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and NM) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively. (C) 2014 Elsevier B.V. All rights reserved.