170 resultados para ultra-deep desulfurization
Resumo:
A geophysical and geochemical study has been conducted in a fractured carbonate aquifer located at Combioula in the southwestern Swiss Alps with the objective to detect and characterize hydraulically active fractures along a 260-m-deep borehole. Hydrochemical analyses, borehole diameter, temperature and fluid electrical conductivity logging data were integrated in order to relate electrokinetic self-potential signals to groundwater flow inside the fracture network. The results show a generally good, albeit locally variable correlation of variations of the self-potential signals with variations in temperature, fluid electrical conductivity and borehole diameter. Together with the hydrochemical evidence, which was found to be critical for the interpretation of the self-potential data, these measurements not only made it possible to detect the hydraulically active fractures but also to characterize them as zones of fluid gain or fluid loss. The results complement the available information from the corresponding litholog and illustrate the potential of electrokinetic self-potential signals in conjunction with temperature, fluid electrical conductivity and hydrochemical analyses for the characterization of fractured aquifers, and thus may offer a perspective for an effective quantitative characterization of this increasingly important class of aquifers and geothermal reservoirs.
Resumo:
PURPOSE: To improve the traditional Nyquist ghost correction approach in echo planar imaging (EPI) at high fields, via schemes based on the reversal of the EPI readout gradient polarity for every other volume throughout a functional magnetic resonance imaging (fMRI) acquisition train. MATERIALS AND METHODS: An EPI sequence in which the readout gradient was inverted every other volume was implemented on two ultrahigh-field systems. Phantom images and fMRI data were acquired to evaluate ghost intensities and the presence of false-positive blood oxygenation level-dependent (BOLD) signal with and without ghost correction. Three different algorithms for ghost correction of alternating readout EPI were compared. RESULTS: Irrespective of the chosen processing approach, ghosting was significantly reduced (up to 70% lower intensity) in both rat brain images acquired on a 9.4T animal scanner and human brain images acquired at 7T, resulting in a reduction of sources of false-positive activation in fMRI data. CONCLUSION: It is concluded that at high B(0) fields, substantial gains in Nyquist ghost correction of echo planar time series are possible by alternating the readout gradient every other volume.
Resumo:
The screening of testosterone (T) misuse for doping control is based on the urinary steroid profile, including T, its precursors and metabolites. Modifications of individual levels and ratio between those metabolites are indicators of T misuse. In the context of screening analysis, the most discriminant criterion known to date is based on the T glucuronide (TG) to epitestosterone glucuronide (EG) ratio (TG/EG). Following the World Anti-Doping Agency (WADA) recommendations, there is suspicion of T misuse when the ratio reaches 4 or beyond. While this marker remains very sensitive and specific, it suffers from large inter-individual variability, with important influence of enzyme polymorphisms. Moreover, use of low dose or topical administration forms makes the screening of endogenous steroids difficult while the detection window no longer suits the doping habit. As reference limits are estimated on the basis of population studies, which encompass inter-individual and inter-ethnic variability, new strategies including individual threshold monitoring and alternative biomarkers were proposed to detect T misuse. The purpose of this study was to evaluate the potential of ultra-high pressure liquid chromatography (UHPLC) coupled with a new generation high resolution quadrupole time-of-flight mass spectrometer (QTOF-MS) to investigate the steroid metabolism after transdermal and oral T administration. An approach was developed to quantify 12 targeted urinary steroids as direct glucuro- and sulfo-conjugated metabolites, allowing the conservation of the phase II metabolism information, reflecting genetic and environmental influences. The UHPLC-QTOF-MS(E) platform was applied to clinical study samples from 19 healthy male volunteers, having different genotypes for the UGT2B17 enzyme responsible for the glucuroconjugation of T. Based on reference population ranges, none of the traditional markers of T misuse could detect doping after topical administration of T, while the detection window was short after oral TU ingestion. The detection ability of the 12 targeted steroids was thus evaluated by using individual thresholds following both transdermal and oral administration. Other relevant biomarkers and minor metabolites were studied for complementary information to the steroid profile, including sulfoconjugated analytes and hydroxy forms of glucuroconjugated metabolites. While sulfoconjugated steroids may provide helpful screening information for individuals with homozygotous UGT2B17 deletion, hydroxy-glucuroconjugated analytes could enhance the detection window of oral T undecanoate (TU) doping.
Resumo:
PURPOSE: To examine the effects of the world's most challenging mountain ultra-marathon (Tor des Géants(®) 2012) on the energy cost of three types of locomotion (cycling, level and uphill running) and running kinematics. METHODS: Before (pre-) and immediately after (post-) the competition, a group of ten male experienced ultra-marathon runners performed in random order three submaximal 4-min exercise trials: cycling at a power of 1.5 W kg(-1) body mass; level running at 9 km h(-1) and uphill running at 6 km h(-1) at an inclination of +15 % on a motorized treadmill. Two video cameras recorded running mechanics at different sampling rates. RESULTS: Between pre- and post-, the uphill-running energy cost decreased by 13.8 % (P = 0.004); no change was noted in the energy cost of level running or cycling (NS). There was an increase in contact time (+10.3 %, P = 0.019) and duty factor (+8.1 %, P = 0.001) and a decrease in swing time (-6.4 %, P = 0.008) in the uphill-running condition. CONCLUSION: After this extreme mountain ultra-marathon, the subjects modified only their uphill-running patterns for a more economical step mechanics.
Resumo:
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).
Resumo:
The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS.
Resumo:
This review covers some of the contributions to date from cerebellar imaging studies performed at ultra-high magnetic fields. A short overview of the general advantages and drawbacks of the use of such high field systems for imaging is given. One of the biggest advantages of imaging at high magnetic fields is the improved spatial resolution, achievable thanks to the increased available signal-to-noise ratio. This high spatial resolution better matches the dimensions of the cerebellar substructures, allowing a better definition of such structures in the images. The implications of the use of high field systems is discussed for several imaging sequences and image contrast mechanisms. This review covers studies which were performed in vivo in both rodents and humans, with a special focus on studies that were directed towards the observation of the different cerebellar layers.
Resumo:
Nanoparticles (NPs) have gained a lot of interest in recent years due to their huge potential for applications in industry and medicine. Their unique properties offer a large number of attractive possibilities in the biomedical field, providing innovative tools for diagnosis of diseases and for novel therapies. Nevertheless, a deep understanding of their interactions with living tissues and the knowledge about their possible effects in the human body are necessary for the safe use of nanoparticulate formulations. The aim of this PhD project was to study in detail the interactions of therapeutic NPs with living cells, including cellular uptake and release, cellular localization and transport across the cell layers. Moreover, the effects of NPs on the cellular metabolic processes were determined using adapted in vitro assays. We evaluated the biological effect of several NPs potentially used in the biomedical field, including titanium dioxide (Ti02) NPs, 2-sized fluorescent silica NPs, ultrasmall superparamagnetic iron oxide (USPIO) NPs, either uncoated or coated with oleic acid or with polyvinylamine (aminoPVA) and poly(lactic-co-glycolic acid) - polyethylene-oxide (PLGA-PEO) NPs. We have found that the NPs were internalized by the cells, depending on their size, chemical composition, surface coating and also depending on the cell line considered. The uptake of aminoPVA-coated USPIO NPs by endothelial cells was enhanced in the presence of an external magnetic field. None of the tested USPIO NPs and silica NPs was transported across confluent kidney cell layers or brain endothelial cell layers, even in the presence of a magnetic field. However, in an original endothelium-glioblastoma barrier model which was developed, uncoated USPIO NPs were directly transferred from endothelial cells to glioblastoma cells. Following uptake, Ti02 NPs and uncoated USPIO NPs were released by the kidney cells, but not by the endothelial cells. Furthermore, these NPs induced an oxidative stress and autophagy in brain endothelial cells, possibly associated with their enhanced agglomeration in cell medium. A significant DNA damage was found in brain endothelial cells after their exposure to TiO2NPs. Altogether these results extend the existing knowledge about the effects of NPs on living cells with regard to their physicochemical characteristics and provide interesting tools for further investigation. The development of the in vitro toxicological assays with a special consideration for risk evaluation aims to reduce the use of animal experiments. -Les nanoparticules (NPs) présentent beaucoup d'intérêt dans le domaine biomédical et industriel. Leurs propriétés uniques offrent un grand nombre de possibilités de solutions innovantes pour le diagnostique et la thérapie. Cependant, pour un usage sûr des NPs il est nécessaire d'acquérir une connaissance approfondie des mécanismes d'interactions des NPs avec les tissus vivants et de leur effets sur le corps humain. Le but de ce projet de thèse était d'étudier en détail les mécanismes d'interactions de NPs thérapeutiques avec des cellules vivantes, en particulier les mécanismes d'internalisation cellulaire et leur subséquente sécrétion par les cellules, leur localisation cellulaire, leur transport à travers des couches cellulaires, et l'évaluation des effets de NPs sur le métabolisme cellulaire, en adaptant les méthodes existante d'évaluation cyto-toxico logique s in vitro. Pour ces expériences, les effets biologiques de nanoparticules d'intérêt thérapeutique, telles que des NPs d'oxyde de titane (TiO2), des NPs fluorescents de silicate de 2 tailles différentes, des NPs, d'oxyde de fer super-para-magnétiques ultra-petites (USPIO), soit non- enrobées soit enrobées d'acide oléique ou de polyvinylamine (aminoPVA), et des NPs d'acide poly(lactique-co-glycolique)-polyethylene-oxide (PLGA-PEO) ont été évalués. Les résultats ont démontré que les NPs sont internalisées par les cellules en fonction de leur taille, composition chimique, enrobage de surface, et également du type de cellules utilisées. L'internalisation cellulaire des USPIO NPs a été augmentée en présence d'un aimant externe. Aucune des NPs de fer et de silicate n'a été transportée à travers des couches de cellules épithéliales du rein ou endothéliales du cerveau, même en présence d'un aimant. Cependant, en développant un modèle original de barrière endothélium-glioblastome, un transfert direct de NPs d'oxyde de fer de cellule endothéliale à cellule de glioblastome a été démontré. A la suite de leur internalisation les NPs d'oxyde de fer et de titane sont relâchées par des cellules épithéliales du rein, mais pas des cellules endothéliales du cerveau. Dans les cellules endothéliales du cerveau ces NPs induisent en fonction de leur état d'agglomération un stress oxydatif et des mécanismes d'autophagie, ainsi que des dommages à l'ADN des cellules exposées aux NPs d'oxyde de titane. En conclusion, les résultats obtenus élargissent les connaissances sur les effets exercés par des NPs sur des cellules vivantes et ont permis de développer les outils expérimentaux pour étudier ces effets in vitro, réduisant ainsi le recours à des expériences sur animaux.
Resumo:
A highly sensitive ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantification of buprenorphine and its major metabolite norbuprenorphine in human plasma. In order to speed up the process and decrease costs, sample preparation was performed by simple protein precipitation with acetonitrile. To the best of our knowledge, this is the first application of this extraction technique for the quantification of buprenorphine in plasma. Matrix effects were strongly reduced and selectivity increased by using an efficient chromatographic separation on a sub-2μm column (Acquity UPLC BEH C18 1.7μm, 2.1×50mm) in 5min with a gradient of ammonium formate 20mM pH 3.05 and acetonitrile as mobile phase at a flow rate of 0.4ml/min. Detection was made using a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The procedure was fully validated according to the latest Food and Drug Administration guidelines and the Société Française des Sciences et Techniques Pharmaceutiques. Very good results were obtained by using a stable isotope-labeled internal standard for each analyte, to compensate for the variability due to the extraction and ionization steps. The method was very sensitive with lower limits of quantification of 0.1ng/ml for buprenorphine and 0.25ng/ml for norbuprenorphine. The upper limit of quantification was 250ng/ml for both drugs. Trueness (98.4-113.7%), repeatability (1.9-7.7%), intermediate precision (2.6-7.9%) and internal standard-normalized matrix effects (94-101%) were in accordance with international recommendations. The procedure was successfully used to quantify plasma samples from patients included in a clinical pharmacogenetic study and can be transferred for routine therapeutic drug monitoring in clinical laboratories without further development.
Resumo:
Résumé La levodopa (LD) est le traitement antiparkinsonien le plus efficace et le plus répandu. Son effet est composé d'une réponse de courte (quelques heures) et de longue durée (jours à semaines). La persistance de cette dernière dans les phases avancées de la maladie de Parkinson est controversée, et sa mesure directe n'a jamais été faite en raison des risques liés à un sevrage complet de LD. La stimulation du noyau sous-thalamique est un nouveau traitement neurochirurgical de la maladie de Parkinson, indiqué dans les formes avancées, qui permet l'arrêt complet du traitement médicamenteux chez certains patients. Nous avons étudié 30 patients qui ont bénéficié d'une telle stimulation, et les avons évalués avant l'intervention sans médicaments, et à 6 mois postopératoires, sans médicaments et sans stimulation. Chez 19 patients, la médication a pu être complètement arrêtée, alors qu'elle a dû être réintroduite chez les 11 patients restants. Au cours des 6 mois qui ont suivi l'intervention, le parkinsonisme s'est aggravé de façon significative dans le groupe sans LD, et non dans le groupe avec LD. Cette différence d'évolution s'explique par la perte de l'effet à long terme de la LD dans le groupe chez qui ce médicament a pu être arrêté. En comparant cette aggravation à la magnitude de l'effet à court terme, la réponse de longue durée correspond environ à 80 pourcent de la réponse de courte durée, et elle lui est inversement corrélée. Parmi les signes cardinaux de la maladie, la réponse de longue durée affecte surtout la bradycinésie et la rigidité, mais pas le tremblement ni la composante axiale. La comparaison du parkinsonisme avec traitement (stimulation et LD si applicable) ne montre aucune différence d'évolution entre les 2 groupes, suggérant que la stimulation compense tant la réponse de courte que de longue durée. Notre travail montre que la réponse de longue durée à la LD demeure significative chez les patients parkinsoniens après plus de 15 ans d'évolution, et suggère que la stimulation du noyau sous-thalamique compense les réponses de courte et de longue durée. Abstract Background: Long duration response to levodopa is supposed to decrease with Parkinson's disease (PD) progression, but direct observation of this response in advanced PD has never been performed. Objective: To study the long duration response to levodopa in advanced PD patients treated with subthalamic deep-brain stimulation. Design and settings: We studied 30 consecutive PD patients who underwent subthalamic deep-brain stimulation. One group had no antiparkinsonian treatment since surgery (no levodopa), while medical treatment had to be reinitiated in the other group (levodopa). Main outcome measures: motor Unified Parkinson's Disease Rating Scale (UPDRS). Results: In comparison with preoperative assessment, evaluation six months postoperatively with stimulation turned off for three hours found a worsening of the motor part of UPDRS in the no-levodopa group. This worsening being absent in the levodopa group, it most probably reflected the loss of the long duration response to levodopa in the no-levodopa group. Stimulation turned on, postoperative motor UPDRS in both groups were similar to preoperative on medication scores, suggesting that subthalamic deep-brain stimulation compensated for both the short and long duration responses to levodopa. Conclusions: Our results suggest that the long duration response to levodopa remains significant even in advanced PD, and that subthalamic deep-brain stimulation compensates for both the short and the long duration resposes to levodopa.
Resumo:
Posaconazole (POS) is a new antifungal agent for prevention and therapy of mycoses in immunocompromised patients. Variable POS pharmacokinetics after oral dosing may influence efficacy: a trough threshold of 0.5 ?g/ml has been recently proposed. Measurement of POS plasma concentrations by complex chromatographic techniques may thus contribute to optimize prevention and management of life-threatening infections. No microbiological analytical method is available. The objective of this study was to develop and validate a new simplified ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method and a sensitive bioassay for quantification of POS over the clinical plasma concentration range. The UPLC-MS/MS equipment consisted of a triple quadrupole mass spectrometer, an electrospray ionization (ESI) source, and a C(18) analytical column. The Candida albicans POS-hypersusceptible mutant (MIC of 0.002 ?g/ml) ?cdr1 ?cdr2 ?flu ?mdr1 ?can constructed by targeted deletion of multidrug efflux transporters and calcineurin genes was used for the bioassay. POS was extracted from plasma by protein precipitation with acetonitrile-methanol (75%/25%, vol/vol). Reproducible standard curves were obtained over the range 0.014 to 12 (UPLC-MS/MS) and 0.028 to 12 ?g/ml (bioassay). Intra- and interrun accuracy levels were 106% ± 2% and 103% ± 4% for UPLC-MS/MS and 102% ± 8% and 104% ± 1% for bioassay, respectively. The intra- and interrun coefficients of variation were 7% ± 4% and 7% ± 3% for UPLC-MS/MS and 5% ± 3% and 4% ± 2% for bioassay, respectively. An excellent correlation between POS plasma concentrations measured by UPLC-MS/MS and bioassay was found (concordance, 0.96). In 26 hemato-oncological patients receiving oral POS, 27/69 (39%) trough plasma concentrations were lower than 0.5 ?g/ml. The UPLC-MS/MS method and sensitive bioassay offer alternative tools for accurate and precise quantification of the plasma concentrations in patients receiving oral posaconazole.
Resumo:
L'introduction des technologies de séquençage de nouvelle génération est en vue de révolutionner la médecine moderne. L'impact de ces nouveaux outils a déjà contribué à la découverte de nouveaux gènes et de voies cellulaires impliqués dans la pathologie de maladies génétiques rares ou communes. En revanche, l'énorme quantité de données générées par ces systèmes ainsi que la complexité des analyses bioinformatiques nécessaires, engendre un goulet d'étranglement pour résoudre les cas les plus difficiles. L'objectif de cette thèse a été d'identifier les causes génétiques de deux maladies héréditaires utilisant ces nouvelles techniques de séquençage, couplées à des technologies d'enrichissement de gènes. Dans ce cadre, nous avons développé notre propre méthode de travail (pipeline) pour l'alignement des fragments de séquence (reads). Suite à l'identification de gènes, nous avons réalisé une analyse fonctionnelle pour élucider leur rôle dans la maladie. Dans un premier temps, nous avons étudié et identifié des mutations impliquées dans une forme récessive de la rétinite pigmentaire qui est à ce jour la dégénérescence rétinienne héréditaire la plus fréquente. En particulier, nous avons constaté que des mutations faux-sens dans le gène FAM161A étaient la cause de la rétinite pigmentaire préalablement associé avec le locus RP28. De plus, nous avons démontré que ce gène avait des fonctions au niveau du cil du photorécepteur, complétant le large spectre des cilliopathies rétiniennes héréditaires. Dans un second temps, nous avons exploré la possibilité qu'un syndrome, relativement fréquent en pédiatrie de fièvre récurrente, appelé PFAPA (acronyme de fièvre périodique avec adénite stomatite, pharyngite et cervical aphteuse) puisse avoir une origine génétique. L'étiologie de cette maladie n'étant pas claire, nous avons tenté d'identifier le spectre génétique de patients PFAPA. Comme nous n'avons pas pu mettre à jour un nouveau gène unique muté et responsable de la maladie chez tous les individus dépistés, il semblerait qu'un modèle génétique plus complexe suggérant l'implication de plusieurs gènes dans la pathologie ait été identifié chez les patients touchés. Ces gènes seraient notamment impliqués dans des processus liés à l'inflammation ce qui élargirait l'impact de ces études à d'autres maladies auto-inflammatoires.
Resumo:
PURPOSE: To compare the efficacy and safety of T-Flux implant versus Healon GV in deep sclerectomy. METHODS: Randomized prospective trial of 23 eyes of 20 patients with medically uncontrolled open angle glaucoma over a period of 24 months, who underwent deep sclerectomy with either Healon GV or T-Flux implant. RESULTS: Mean postoperative intraocular pressure was 13.2 +/- 3.0 mm Hg with T-Flux implant (group 1) and 12.2 +/- 3.5 mm Hg with Healon GV (group 2), with a pressure reduction of 53.0% in group 1 (13.2 mm Hg vs. 28.1 mm Hg) and of 48.1% in group 2 (12.2 mm Hg vs. 23.5 mm Hg). Qualified and complete successes were 100% and 95.4% respectively. Pressures equal to or less than 15 mm Hg were 81.8% in group 1 and 90.9% in group 2 with or without treatment, and 63.6% in group 1 and 81.8% in group 2 without treatment. The number of glaucoma treatments dropped from 2.5 +/- 0.9 to 0.4 +/- 0.7 in group 1 and from 2.2 +/- 1.0 to 0.2 +/- 0.4 in group 2. The goniopuncture rate was 63.6% in group 1 and 36.4% in group 2, with a mean pressure drop of 6.1 +/- 3.9 mm Hg and 3.25 +/- 1.2 mm Hg respectively. Overall, slit-lamp diagnosed surgery-related complications included positive Seidel (13.6%), hyphaema (22.7%), choroidal detachment, and iris incarceration (4.5% each). At 2 years, ultrasound biomicroscopy showed mainly low reflective (40.1%) and flattened (36.4%) blebs. Principally latter ones were associated with the need for adjunctive treatment. A hypoechoic area in the suprachoroidal space was seen in at least 59.1% of eyes at 2 years and was not associated with lower intraocular pressure. CONCLUSION: Deep sclerectomy is an effective and safe surgery. However, longer follow up and larger study groups are required to assess the additional benefit of nonabsorbable implants.
Resumo:
New approaches to the clinical treatment of traumatic nerve injuries may one day utilize stem cells to enhance nerve regeneration. Adipose-derived stem cells (ASC) are found in abundant quantities and can be harvested by minimally invasive procedures that should facilitate their use in such regenerative applications. We have analyzed the properties of human ASC isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures. Cells from the superficial layer proliferate significantly faster than those from the deep layer. In both the deep and superficial layers, ASC express the pluripotent stem cell markers oct4 and nanog and also the stro-1 cell surface antigen. Superficial layer ASC induce the significantly enhanced outgrowth of neurite-like processes from neuronal cell lines when compared with that of deep layer cells. However, analysis by reverse transcription with the polymerase chain reaction and by enzyme-linked immunosorbent assay has revealed that ASC isolated from both layers express similar levels of the following neurotrophic factors: nerve growth factor, brain-derived neurotrophic factor and glial-derived neurotrophic factor. Thus, human ASC show promising potential for the treatment of traumatic nerve injuries. In particular, superficial layer ASC warrant further analysis of their neurotrophic molecules.