484 resultados para epithelium tumor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Alterations in glucose metabolism and epithelial-mesenchymal transition (EMT) constitute two important characteristics of carcinoma progression toward invasive cancer. Despite an extensive characterization of each of them separately, the links between EMT and glucose metabolism of tumor cells remain elusive. Here we show that the neuronal glucose transporter GLUT3 contributes to glucose uptake and proliferation of lung tumor cells that have undergone an EMT. RESULTS: Using a panel of human non-small cell lung cancer (NSCLC) cell lines, we demonstrate that GLUT3 is strongly expressed in mesenchymal, but not epithelial cells, a finding corroborated in hepatoma cells. Furthermore, we identify that ZEB1 binds to the GLUT3 gene to activate transcription. Importantly, inhibiting GLUT3 expression reduces glucose import and the proliferation of mesenchymal lung tumor cells, whereas ectopic expression in epithelial cells sustains proliferation in low glucose. Using a large microarray data collection of human NSCLCs, we determine that GLUT3 expression correlates with EMT markers and is prognostic of poor overall survival. CONCLUSIONS: Altogether, our results reveal that GLUT3 is a transcriptional target of ZEB1 and that this glucose transporter plays an important role in lung cancer, when tumor cells loose their epithelial characteristics to become more invasive. Moreover, these findings emphasize the development of GLUT3 inhibitory drugs as a targeted therapy for the treatment of patients with poorly differentiated tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now possible to perform resections of slow-growing tumors in awake patients. Using direct electrical stimulation, real-time functional mapping of the brain can be used to prevent the resection of essential areas near the tumor. Simple clinical observations of patients with a resection of slow-growing tumors have demonstrated substantial recovery within a few days of such 'awake surgery'. The aim of this study was to investigate the kinetics of recovery following the resection of slow-growing tumors invading the left parietal area and to focus mainly on its rapidity. Two patients were assessed by standard line bisection tests and compared with eight healthy individuals. Independently of the pure nature of the symptoms, we report that the patients rapidly and substantially recovered from pronounced right neglect. They were tested 48 hours after the surgery and the recovery was significant for both patients after less than 4 hours. Strikingly, for one patient, recovery was ultra fast and substantial in the first practice session within less than 7 minutes: it occurred without verbal feedback and was substantially retained during the following testing session. Its rapidity suggests a process of unmasking redundant networks. With the slow growth of the lesion, the contralesional hemisphere is probably progressively prepared for rapid unmasking of homologue networks. These results have major clinical implications. For patients with an invading left-side tumor, it is now clear that line bisections are required before, during, and after awake surgery to: plan the surgery, control the quality of the resection, and also optimize the rehabilitation of the patient

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a mode of nude mice bearing a human colon carcinoma xenograft, the biodistribution and tumor localization of metatetrahydroxyphenylchlorin (m-THPC) coupled to polyethylene glycol (PEG) were compared with those of the free form of this photosensitizer used in photodynamic therapy (PDT). At different times after i.v. injection of both forms of 125I-labeled photosensitizer, m-THPC-PEG gave on average a 2-fold higher tumor uptake than free m-THPC. In addition, at early times after injection, m-THPC-PEG showed a 2-fold longer blood circulating half-life and a 4-fold lower liver uptake than free m-THPC. The tumor to normal tissue ratios of radioactivity concentrations were always higher for m-THPC-PEG than for free m-THPC at any time point studied from 2 to 96 hr post-injection. Significant coefficients of correlation between direct fluorescence measurements and radioactivity counting were obtained within each organ tested. Fluorescence microscopy studies showed that m-THPC-PEG was preferentially localized near the tumor vessels, whereas m-THPC was more diffusely distributed inside the tumor tissue. To verify whether m-THPC-PEG conjugate remained phototoxic in vivo, PDT experiments were performed 72 hr after injection and showed that m-THPC-PEG was as potent as free m-THPC in the induction of tumor regression provided that the irradiation does for m-THPC-PEG conjugate was adapted to a well-tolerated 2-fold higher level. The overall results demonstrate first the possibility of improving the in vivo tumor localization of a hydrophobic dye used for PDT by coupling it to PEG and second that a photosensitizer conjugated to a macromolecule can remain phototoxic in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oncogenesis is closely linked to abnormalities in cell differentiation. Notch signaling provides an important form of intercellular communication involved in cell fate determination, stem cell potential and differentiation. Here we review the role of this pathway in the integrated growth/differentiation control of the keratinocyte cell type, and the maintenance of normal skin homeostasis. In parallel with the pro-differentiation function of Notch1 in keratinocytes, we discuss recent evidence pointing to a tumor suppressor function of this gene in both mouse skin and human cervical carcinogenesis. The possibility that Notch signaling elicits signals with a duality of growth positive and negative function will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Sevelamer is a phosphate-binder used effectively for the treatment of hyperphosphatemia in patients treated with dialysis. Objectives. To describe the safety of sevelamer in children with hyperphosphatemia secondary to tumor lysis syndrome and the serum phosphate concentrations observed following its administration. Procedure. A retrospective chart review of all children with leukemia/lymphoma diagnosed between November 2002 and April 2004 who received sevelamer during their initial admission was conducted. We monitored the effects of sevelamer on serum phosphate concentration, calcium/phosphate product and renal function at hours 24, 48, and 72 from sevelamer initiation. Results. Thirteen patients received sevelamer during the Study period. Their median age was 13 years (range 2.7-17.9) and eight were boys. Nine children had acute lymphoblastic leukemia, one had acute myeloid leukemia and 3 had non-Hodgkin's lymphoma. The most frequently used dose of sevelamer was 400 mg orally twice daily. The median duration of sevelamer therapy was 2 days (range 1 -7). Two children were excluded from the efficacy analysis due to concurrent use of dialysis. Mean serum phosphate levels decreased after sevelamer administration, in eleven patients, from a baseline 2.2 mmol/L +/- 0.4 (95% Cl, 1.7-3.1) to 1.1 mmol/L +/- 0.2 at hour 72 (95%Cl, 0.6-1.5). The only toxicity attributed to sevelamer was mild vomiting in three patients. Conclusions. Sevelamer appears to be effective and tolerable for the treatment of hyperphosphatemia associated with tumor lysis syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY The effective development of an immune response depends on the careful interplay and the regulation between innate and adaptive immunity. As the dendritic cells (DCs) are equipped with many receptors, such as Toll-like receptors, which can detect the presence of infection by recognizing different component of bacteria, fungi and even viruses, they are the among the first cells to respond to the infection. Upon pathogen challenge, the DCs interpret the innate system activation as a maturation signal, resulting in the migration of the DCS to a draining lymph node site. There, activated DCs present efficiently antigens to naïve T cells, which are in turn activated and initiate adaptive immunity. Therefore, DCs are the main connectors between innate and adaptive immune systems. In addition to be the most efficient antigen- presenting cells, DCs play a central role in the regulation of immune responses and immune tolerance. Despite extensive research, many aspects related to DC biology are still unsolved and/or controversial. The low frequency of DCs in vivo often hamper study of DC biology and in vitro-derived DCs are not suited to address certain questions, such as the development of DC. We sought of transforming in vivo the DCs through the specific expression of an oncogene, in order to obtain unlimited numbers of these cells. To achieve this goal, transgenic mouse lines expressing the SV40 Large T oncogene under the control of the CD1 1 c promoter were generated. These transgenic mice are healthy until the age of three to four months without alterations in the DC biology. Thereafter transgenic mice develop a fatal disease that shows features of a human pathology, named histiocytosis, involving DCs. We demonstrate that the disease development in the transgenic mice correlates with a massive accumulation of transformed DCs in the affected organs. Importantly, transformed DCs are immature and fully conserve their capacity to mature in antigen presenting cells. We observe hyperproliferation of transformed DCs only in the sick transgenic mice. Surprisingly, transformed DCs do not proliferate in vitro, but transfer of the transformed DCs into immunodeficient or tolerant host leads to tumor formation. Altoghether, the transgenic mouse lines we have generated represent a valuable tumor model for human histiocytosis, and provide excellent tools to study DC biology. RESUME Le développement d'une réponse immunitaire efficace dépend d'une minutieuse interaction et régulation entre l'immunité innée et adaptative. Comme les cellules dendritiques (DCs) sont équipées de nombreux récepteurs, tels que les récepteurs Toll-like, qui peuvent détecter la présence d'une infection en reconnaissant différents composants bactériens, issus de champignons ou même viraux, elles sont parmi les premières cellules à répondre à l'infection. Suite à la stimulation induite par le pathogène, les DCs interprètent l'activation du système immunitaire inné comme un signal de maturation, résultant dans la migration des DCs vers le ganglion drainant le site d'infection. Là, les DCs actives présentent efficacement des antigènes aux cellules T, qui sont à leur tour activées et initient les systèmes d'immunité adaptative. Ainsi, les DCs forment le lien principal entre les réponses immunitaires innées et adaptatives. En plus d'être les cellules présentatrices d'antigènes les plus efficaces, les DCs jouent un rôle central dans la régulation du système immunitaire et dans le phénomène de tolérance. Malgré des recherches intensives, de nombreux aspects liés à la biologie des DCs sont encore irrésolus et/ou controversés. La faible fréquence des DCs in vivo gêne souvent l'étude de la biologie de ces cellules et les DCs dérivées in vitro ne sont pas adéquates pour adresser certaines questions, telles que le développement des DCs. Afin d'obtenir des quantités illimitées de DCs, nous avons songé à transformer in vivo les DC grâce à l'expression spécifique d'un oncogène. Afin d'atteindre ce but, nous avons généré des lignées de souris transgéniques qui expriment l'oncogène SV40 Large T sous le contrôle du promoter CD1 le. Ces souris transgéniques sont saines jusqu'à l'âge de trois à quatre mois et ne présentent pas d'altération dans la biologie des DCs. Ensuite, les souris transgéniques développent une maladie présentant les traits caractéristiques d'une pathologie humaine nommée histiocytose, qui implique les DCs. Nous montrons que le développement de cette maladie corrèle avec une accumulation massive des DCs transformées dans les organes touchés. De plus, les DCs transformées sont immatures et conservent leur capacité à différencier en cellules présentatrices d'antigène. Nous observons une hyper-prolifération des DCs transformées seulement dans les souris transgéniques malades. Etonnament, les DC transformées ne prolifèrent pas in vitro, par contre, le transfert des DCs transformées dans des hôtes immuno-déficients ou tolérant conduit à la formation de tumeurs. Globalement, les lignées de souris transgéniques que nous avons générées représentent un modèle valide pour l'histiocytose humaine, et de plus, offrent d'excellents outils pour étudier la biologie des DCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : Le virus tumoral de la glande mammaire de la souris (MMTV) est un rétrovirus provoquant le développement de tumeurs dans les glandes mammaires des souris susceptibles femelles. Au cours de son évolution, le virus s'est adapté et s'exprime dans des cellules spécialisées. Les lymphocytes B sont les premières cellules infectées et elles sont essentielles pour la propagation de l'infection aux glandes mammaires. Dans notre étude, le virus MMTV a été utilisé afin d'examiner les voies de signalisation induites par les glucocorticoïdes (dexaméthasone (dex), une hormone stéroïdienne) et le transforming growth factor-f3 (TGF-P, une cytokine), deux molécules impliquées dans l'activation de la transcription à partir du promoteur du MMTV dans les cellules B. Le TGF-P seul n'influence pas l'activité du promoteur du MMTV. Par contre, en synergie avec dex, le TGF-P provoque une super-induction de l'expression du promoteur par rapport à une stimulation par le glucocorticoïde seul. Cette super-induction est régulée par une famille de protéines, les Smads. Ainsi, dans les lymphocytes B, l'utilisation du MMTV a permis de mettre en évidence une nouvelle synergie entre les glueocortieoïdes et le TGF-p. pans ce travail, l'utilisation d'inhibiteurs pharmacologiques et de mutants « dominant-négatifs » nous a pet mis de démontrer qu'une Protéine Kinase C delta (PKC5) active est impliquée dans la transduction du signal lors de la réponse au dex ainsi que celle au TGF-P. Néanmoins, la PKC5 est régulée différemment dans chaque voie spécifique : la voie du TGF-p nécessitait l'activation du PKC5 par diacylglycerol (DAG) et la phosphorylation de tyrosines spécifiques, alors que la voie impliquant les glucocorticoïdes ne le nécessitait pas. Nous avons aussi démontré qu'une tyrosine kinase de la famille Src est responsable de la phosphorylation des tyrosines sur la PKC5. Les essais de kinase in vitro nous ont permis de découvrir que plusieurs Src kinases peuvent phosphoryler la PKC6 dans les cellules B et qu'elles étaient constitutivement actives. Enfin, nous avons montré qu'il existe une interaction protéine - protéine induite par dex, entre le récepteur aux glucocorticoïdes (GR) et la PKC5 dans les cellules B, une association qui n'a pas été démontrée auparavant. Par ailleurs, nous avons analysé les domaines d'interactions entre PKC5 et GR en utilisant les essais de «GST pull-down». Nos résultats montrent que le domaine régulateur de la PKC5 et celui qui interagit avec l'ADN du GR sont impliqués. En résumé, nous avons trouvé que dans une lignée lymphocytaire B, le virus MMTV utilise des mécanismes pour réguler à la fois la transcription et la voie de signalisation qui sont différents de ceux utilisés dans les cellules mammaires épithéliales et les fibroblastes. Nos découvertes pourraient être utilisées comme modèles pour l'étude de gènes cellulaires impliqués dans des processus tels qu'inflammation, immunité ou cancérogénèse. Summary: Mouse Mammary Tumor Virus (MMTV) is a retrovirus that causes tumors in the mammary glands of susceptible female mice and has adapted evolutionarily to be expressed in specialized cells. The B lymphocytes are the first cells to be infected by the MMTV and are essential for the spread of infection to the mammary glands. Here, we used the MMTV as a model system to investigate the signalling cascade induced by giucocorticoids (dexamethasone, "dex", a steroid hormone), and by Transforming Growth Factor-beta (TGF-P, a cytokine) leading to its transcriptional activation in B lymphocytes. By itself, TGF-I3 does not affect the basal activity of the MMTV promoter. However, TGF-13 significantly increases glucocorticoid-induced expression, through its effectors, the Smad factors. Thus, MMTV in B cells demonstrates a novel synergism between glucocorticoids and TGF-16. In this thesis project, we present evidence, based on the use of pharmacological inhibitors and of dominant-negative mutants, that an active Protein Kinase C delta (PKC6) is required as a signal transducer for the dex response and for the TGF-P superinduction as well. The PKC6 is differentially regulated in each specific pathway: whereas the TGF-13 superinduction required PKC6 to be activated by diacylglycerol (DAG) and to be phosphorylated at specific tyrosine residues, the glueocorticoid-induced pathway did not. We also showed that a protein tyrosine kinase of the Src family is responsible for the phosphorylation of tyrosines on PKC6. By performing in vitro kinase assays, we found that several Src kinases of B cells were able to phosphorylate PKC6 and that they were constitutively active. Finally, we demonstrate a dex-dependent functional protein-protein interaction between the glucocorticoid receptor (GR) and PKC6 in B cells, an association that has not been previously described. We further analysed the interacting domains of PKG6 and GR using in vitro GST pull-down assays, whereby the regulatory domain of PKC6 and the extended DNA-binding domain of the GR were involved. In summary, we found that in B-lymphoid cell lines, MMTV uses novel mechanisms of transcriptional control and signal transduction that are different from those at work in mammary epithelial or fibroblastic cells. These findings will be used as model for cellular genes involved in cellular processes such as immune functions, inflammation, or oncogenic transformation that may have a similar pattern of regulation.