154 resultados para Staphylococcus aureus alpha-toxin HaCat keratinocyte
Resumo:
The antibiotic susceptibility and molecular epidemiology of Panton-Valentine leukocidin (PVL)-positive meticillin-resistant Staphylococcus aureus (MRSA) isolates reported from 17 countries in the Americas, Europe and, Australia-Asia were analysed. Among a total of 3236 non-duplicate isolates, the lowest susceptibility was observed to erythromycin in all regions. Susceptibility to ciprofloxacin showed large variation (25%, 75% and 84% in the Americas, Europe and Australia-Asia, respectively). Two vancomycin-intermediate PVL-positive MRSA isolates were reported, one from Hong Kong and the other from The Netherlands. Resistance to trimethoprim/sulfamethoxazole and linezolid was <1%. Among 1798 MRSA isolates from 13 countries that were tested for the requested 10 non-β-lactam antibiotics, 49.4% were multisusceptible. However, multiresistant isolates (resistant to at least three classes of non-β-lactam antibiotics) were reported from all regions. Sequence type 30 (ST30) was reported worldwide, whereas ST80 and ST93 were exclusive to Europe and Australia, respectively. USA300 and related clones (ST8) are progressively replacing the ST80 clone in several European countries. Eight major clusters were discriminated by multilocus variable-number tandem repeat assay (MLVA), showing a certain geographic specificity. PVL-positive MRSA isolates frequently remain multisusceptible to non-β-lactam agents, but multiresistance is already prevalent in all regions. Surveillance of MRSA susceptibility patterns should be monitored to provide clinicians with the most current information regarding changes in resistance patterns.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene (mecC-MRSA) exhibited at 37°C MICs of oxacillin close to those of methicillin-susceptible S. aureus (MSSA). We investigated whether at this temperature, mecC-MRSA strains respond to flucloxacillin treatment like MSSA strains, using a rat model of endocarditis. Flucloxacillin (human-like kinetics of 2 g intravenously every 6 h) cured 80 to 100% of aortic vegetations infected with five different mecC-MRSA strains. These results suggest that mecC-MRSA infections may successfully respond to treatment with β-lactams.
Resumo:
Staphylococcus aureus is a major cause of serious infections in humans and animals and a vaccine is becoming a necessity. Lactococcus lactis is a non-pathogenic bacterium that can be used as a vector for the delivery of antigens. We investigated the ability of non-living L. lactis heterologously expressing S. aureus clumping factor A (ClfA) and fibronectin-binding protein A (FnbpA), alone or together, to elicit an immune response in rats and protect them from S. aureus experimental infective endocarditis (IE). L. lactis ClfA was used for immunization against S. aureus Newman (expressing ClfA but not FnbpA), while L. lactis ClfA, L. lactis FnbpA, as well as L. lactis ClfA/FnbpA, were used against S. aureus P8 (expressing ClfA and FnbpA). Vaccination of rats with L. lactis ClfA elicited antibodies that inhibited binding of S. aureus Newman to fibrinogen, triggered the production of IL-17A and conferred protection to 13/19 (68%) of the animals from IE (P<0.05). Immunization with L. lactis ClfA, L. lactis FnbpA or L. lactis ClfA/FnbpA also produced antibodies against the target proteins, but these did not prevent binding of S. aureus P8 to fibrinogen or fibronectin and did not protect animals against S. aureus P8 IE. Moreover, immunization with constructs containing FnbpA did not increase IL-17A production. These results indicate that L. lactis is a valuable antigen delivery system able to elicit efficient humoral and cellular responses. However, the most appropriate antigens affording protection against S. aureus IE are yet to be elucidated.
Resumo:
BACKGROUND: The impact of early valve surgery (EVS) on the outcome of Staphylococcus aureus (SA) prosthetic valve infective endocarditis (PVIE) is unresolved. The objective of this study was to evaluate the association between EVS, performed within the first 60 days of hospitalization, and outcome of SA PVIE within the International Collaboration on Endocarditis-Prospective Cohort Study. METHODS: Participants were enrolled between June 2000 and December 2006. Cox proportional hazards modeling that included surgery as a time-dependent covariate and propensity adjustment for likelihood to receive cardiac surgery was used to evaluate the impact of EVS and 1-year all-cause mortality on patients with definite left-sided S. aureus PVIE and no history of injection drug use. RESULTS: EVS was performed in 74 of the 168 (44.3%) patients. One-year mortality was significantly higher among patients with S. aureus PVIE than in patients with non-S. aureus PVIE (48.2% vs 32.9%; P = .003). Staphylococcus aureus PVIE patients who underwent EVS had a significantly lower 1-year mortality rate (33.8% vs 59.1%; P = .001). In multivariate, propensity-adjusted models, EVS was not associated with 1-year mortality (risk ratio, 0.67 [95% confidence interval, .39-1.15]; P = .15). CONCLUSIONS: In this prospective, multinational cohort of patients with S. aureus PVIE, EVS was not associated with reduced 1-year mortality. The decision to pursue EVS should be individualized for each patient, based upon infection-specific characteristics rather than solely upon the microbiology of the infection causing PVIE.
Resumo:
The urgent need of effective therapies for methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) is a cause of concern. We aimed to ascertain the in vitro and in vivo activity of the older antibiotic fosfomycin combined with different beta-lactams against MRSA and glycopeptide-intermediate-resistant S. aureus (GISA) strains. Time-kill tests with 10 isolates showed that fosfomycin plus imipenem (FOF+IPM) was the most active evaluated combination. In an aortic valve IE model with two strains (MRSA-277H and GISA-ATCC 700788), the following intravenous regimens were compared: fosfomycin (2 g every 8 h [q8h]) plus imipenem (1 g q6h) or ceftriaxone (2 g q12h) (FOF+CRO) and vancomycin at a standard dose (VAN-SD) (1 g q12h) and a high dose (VAN-HD) (1 g q6h). Whereas a significant reduction of MRSA-227H load in the vegetations (veg) was observed with FOF+IPM compared with VAN-SD (0 [interquartile range [IQR], 0 to 1] versus 2 [IQR, 0 to 5.1] log CFU/g veg; P = 0.01), no statistical differences were found with VAN-HD. In addition, FOF+IPM sterilized more vegetations than VAN-SD (11/15 [73%] versus 5/16 [31%]; P = 0.02). The GISA-ATCC 700788 load in the vegetations was significantly lower after FOF+IPM or FOF+CRO treatment than with VAN-SD (2 [IQR, 0 to 2] and 0 [IQR, 0 to 2] versus 6.5 [IQR, 2 to 6.9] log CFU/g veg; P < 0.01). The number of sterilized vegetations after treatment with FOF+CRO was higher than after treatment with VAN-SD or VAN-HD (8/15 [53%] versus 4/20 [20%] or 4/20 [20%]; P = 0.03). To assess the effect of FOF+IPM on penicillin binding protein (PBP) synthesis, molecular studies were performed, with results showing that FOF+IPM treatment significantly decreased PBP1, PBP2 (but not PBP2a), and PBP3 synthesis. These results allow clinicians to consider the use of FOF+IPM or FOF+CRO to treat MRSA or GISA IE.
Resumo:
UNLABELLED: Whole-genome sequencing (WGS) of 228 isolates was used to elucidate the origin and dynamics of a long-term outbreak of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 228 (ST228) SCCmec I that involved 1,600 patients in a tertiary care hospital between 2008 and 2012. Combining of the sequence data with detailed metadata on patient admission and movement confirmed that the outbreak was due to the transmission of a single clonal variant of ST228, rather than repeated introductions of this clone into the hospital. We note that this clone is significantly more frequently recovered from groin and rectal swabs than other clones (P < 0.0001) and is also significantly more transmissible between roommates (P < 0.01). Unrecognized MRSA carriers, together with movements of patients within the hospital, also seem to have played a major role. These atypical colonization and transmission dynamics can help explain how the outbreak was maintained over the long term. This "stealthy" asymptomatic colonization of the gut, combined with heightened transmissibility (potentially reflecting a role for environmental reservoirs), means the dynamics of this outbreak share some properties with enteric pathogens such as vancomycin-resistant enterococci or Clostridium difficile. IMPORTANCE: Using whole-genome sequencing, we showed that a large and prolonged outbreak of methicillin-resistant Staphylococcus aureus was due to the clonal spread of a specific strain with genetic elements adapted to the hospital environment. Unrecognized MRSA carriers, the movement of patients within the hospital, and the low detection with clinical specimens were also factors that played a role in this occurrence. The atypical colonization of the gut means the dynamics of this outbreak may share some properties with enteric pathogens.
Resumo:
OBJECTIVES: In patients with septic shock, circulating monocytes become refractory to stimulation with microbial products. Whether this hyporesponsive state is induced by infection or is related to shock is unknown. To address this question, we measured TNF alpha production by monocytes or by whole blood obtained from healthy volunteers (controls), from patients with septic shock, from patients with severe infection (bacterial pneumonia) without shock, and from patients with cardiogenic shock without infection. MEASUREMENTS: The numbers of circulating monocytes, of CD14+ monocytes, and the expression of monocyte CD14 and the LPS receptor, were assessed by flow cytometry. Monocytes or whole blood were stimulated with lipopolysaccharide endotoxin (LPS), heat-killed Escherichia coli or Staphylococcus aureus, and TNF alpha production was measured by bioassay. RESULTS: The number of circulating monocytes, of CD14+ monocytes, and the monocyte CD14 expression were significantly lower in patients with septic shock than in controls, in patients with bacterial pneumonia or in those with cardiogenic shock (p < 0.001). Monocytes or whole blood of patients with septic shock exhibited a profound deficiency of TNF alpha production in response to all stimuli (p < 0.05 compared to controls). Whole blood of patients with cardiogenic shock also exhibited this defect (p < 0.05 compared to controls), although to a lesser extent, despite normal monocyte counts and normal CD14 expression. CONCLUSIONS: Unlike patients with bacterial pneumonia, patients with septic or cardiogenic shock display profoundly defective TNF alpha production in response to a broad range of infectious stimuli. Thus, down-regulation of cytokine production appears to occur in patients with systemic, but not localised, albeit severe, infections and also in patients with non-infectious circulatory failure. Whilst depletion of monocytes and reduced monocyte CD14 expression are likely to be critical components of the hyporesponsiveness observed in patients with septic shock, other as yet unidentified factors are at work in this group and in patients with cardiogenic shock.
Resumo:
Les déacetylases d'histones (HDACs) déacétylent non seulement les histones, ce qui a généralement pour effet d'augmenter la transcription et l'expression génique, mais également d'autres protéines comme par exemple des protéines de choc thermique (HSP90), la tubuline alpha, certains récepteurs aux stéroïdes ainsi que de nombreux facteurs de transcription (NF-kB p65, Sp1, etc.). Ainsi les HDACs participent au contrôle de nombreux processus cellulaires. Les inhibiteurs des HDACs (ou HDACi), de part leur capacité à induire la différenciation cellulaire et l'apoptose, sont parmi les anti-cancéreux les plus prometteurs en cours de développement pour dans le traitement des néoplasies solides et hématologiques. Récemment, l'activité anti-inflammatoire et immuno- modulatrice des HDACi a été mise en évidence et exploitée avec succès pour le traitement de pathologies auto-immunes dans des modèles précliniques. L'effet des HDACi sur la réponse immunitaire innée restant largement inconnu, nous avons entrepris la première étude d'envergure dans ce domaine. Dans un premier article, nous démontrons que les HDACi inhibent l'expression de nombreux gènes (récepteurs aux produits microbiens, cytokines, chimiokines, molécules d'adhésion et co-stimulatrices, facteurs de croissance, etc.) impliqués dans les défenses anti¬infectieuses in vitro. En accord avec ces données, les HDACi augmentent la mortalité d'animaux infectés dans des modèles de pneumonie et de candidose bénignes. De manière congruente, les HDACi protègent les animaux de mortalité induite par choc toxique et septique en inhibant la réponse inflammatoire exubérante qui caractérise ces pathologies (Roger T. et al., Blood 2011). Afin de caractériser plus en détails l'influence des HDACi sur la réponse immunitaire innée, nous avons également analysé l'impact de deux HDACi, l'acide valproïque (VPA) et la trichostatin A (TSA), sur les principaux mécanismes de défenses antimicrobiennes des macrophages. Dans un second article (Mombelli et al., Journal of Infectious Diseases 2011), nous rapportons que la VPA et la TSA diminuent la capacité des macrophages à phagocyter et à détruire les bactéries Gram-positives Staphylococcus aureus et Gram-négatives Escherichia coli. En accord avec ces données, les HDACi inhibent l'expression de molécules impliquées dans la phagocytose comme les récepteurs éboueurs (Msr 1 et CD14) et de type lectine (Dectin 1), ainsi que les récepteurs aux opsonines (intégrines). Par ailleurs, les HDACi interfèrent avec l'expression de différentes sous unités de la NADPH oxydase (gp91p"ox, p22 phox, p47 phox, p40 phox, p67 phox et Rac2) et de l'oxyde nitrique (NO) synthétase inductible (iNOS), qui sont responsables de la production de dérivés oxygénés (ROS) et nitrogénés (NO) essentiels à la destruction des microorganismes dans le phagolysosome. En résumé, cette étude décrit des mécanismes par lesquels les HDACi diminuent la capacité d'ingérer et de détruire les bactéries, et ainsi augmentent la susceptibilité aux infections. Globalement, nos données indiquent que les HDACi sont de puissants anti¬inflammatoires qui pourraient favoriser la survenue d'infections chez les patients cancéreux traités avec ces drogues, comme semble par ailleurs le suggérer des études cliniques rapportées dans la littérature. Nous proposons un suivi clinique infectieux strict chez les patients traités avec ces agents.
Resumo:
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds to major histocompatibility complex class II molecules and selectively interacts with T cells that bear certain T cell receptor (TCR) V beta domains. Administration of SEB in adult mice results in initial proliferation of V beta 8+ T cells followed by a state of unresponsiveness resulting from a combination of clonal deletion and clonal anergy in the SEB-reactive population. At this time, it is unclear what relationship exists between the T cells that have proliferated and those that have been deleted or have become anergic. Here we show that only a fraction of the potentially reactive V beta 8+ T cells proliferate in response to SEB in vivo, and that all the cells that have proliferated eventually undergo apoptosis. Virtually no apoptosis can be detected in the nonproliferating V beta 8+ T cells. These data demonstrate a causal relationship between proliferation and apoptosis in response to SEB in vivo, and they further indicate that T cells bearing the same TCR V beta segment can respond differently to the same superantigen. The implications of this differential responsiveness in terms of activation and tolerance are discussed.
Resumo:
Anergic T cells display a marked decrease in their ability to produce IL-2 and to proliferate in the presence of an appropriate antigenic signal. Two nonmutually exclusive classes of models have been proposed to explain the persistence of T cell anergy in vivo. While some reports indicate that anergic T cells have intrinsic defects in signaling pathways or transcriptional activities, other studies suggest that anergy is maintained by environmental "suppressor" factors such as cytokines or Abs. To distinguish between these conflicting hypotheses, we employed the well-characterized bacterial superantigen model system to evaluate in vivo the ability of a trace population of adoptively transferred naive or anergized T cells to proliferate in a naive vs anergic environment upon subsequent challenge. Our data clearly demonstrate that bacterial superantigen-induced T cell anergy is cell autonomous and independent of environmental factors.