244 resultados para STRANDED-DNA
Resumo:
We describe a new rapid and efficient polymerase chain reaction (PCR)-based site-directed mutagenesis method. This procedure is effective with any plasmid and it employs four oligonucleotide primers. One primer contains the desired mutation, the second is oriented in the opposite direction (one of these two primers should be phosphorylated), and the third and fourth should be coding in complementary fashion for a unique restriction site to be introduced in a nonessential region. The method consists of two simultaneous PCR reactions; the PCR products are digested with the enzyme that recognizes the newly introduced unique restriction site and then ligased and used to transform competent bacteria. Additionally, the use of Dpn I facilitates the elimination of template DNA. The newly introduced restriction site is essential for ligation in the correct orientation of the two-PCR products and is further used for mutant screening. Resulting plasmids carry both the new restriction site and the desired mutation. Using this method, more than 20 mutants have already been generated (using two different kinds of templates); all these mutants were sequenced for the desired mutation and transfected into AtT-20 cells and the expressed mutant proteins encoded by the vector were assayed.
Resumo:
Recent progress in understanding plant defence has highlighted a complex, interacting network of signalling pathways leading to the induction of numerous genes. The advent of new technologies for the global analysis of gene expression is fundamentally affecting research in biology, and studies on plant defence should benefit from these new approaches. Genome-wide microarrays will provide a powerful tool for the discovery of all defence-related genes and should help in elucidating their function. The association of a particular signalling pathway with a defence response can be tested with microarrays and defined mutants. Comparison of transcript profiles after biotic and abiotic stresses reveals overlapping activation of defence-related genes and defines new concepts on how plants cope with multiple aggressions. The combination of expression data with other biochemical or metabolite measurements seems another promising approach. Finally, small-scale, dedicated microarrays containing sets of well-characterised genes might prove to be a very useful complement to more expensive, less accessible, large-scale arrays.
Resumo:
Nuclear DNA markers, such as short tandem repeats (STR), are widely used for crime investigation and paternity testing. STR were used to determine whether a piece of tissue regurgitated by a dog was part of the penis of a dead, emasculated, man. Unexpectedly, when analyzing the recovered material and a blood sample from the deceased, five out of the 18 loci differed. According to the results, one could have concluded that these samples originated from two different persons. However, taking into account contextual information and data from complementary genetic analyses, the most likely hypothesis was that the deceased was a genetic mosaic or a chimera. Within a forensic genetic context, such genetic peculiarities may prevent associating the perpetrator of an offense with a stain left at a crime scene or lead to false paternity exclusions. Fast recognition of mosaics or chimeras, adapted sampling scheme, as well as careful interpretation of the data should allow avoiding such pitfalls.
Resumo:
PURPOSE: To assess the allelic variation of the VMD2 gene in patients with Best disease and age-related macular degeneration (AMD). METHODS: Three hundred twenty-one AMD patients, 192 ethnically similar control subjects, 39 unrelated probands with familial Best disease, and 57 unrelated probands with the ophthalmoscopic findings of Best disease but no family history were screened for sequence variations in the VMD2 gene by single-strand conformation polymorphism (SSCP) analysis. Amplimers showing a bandshift were reamplified and sequenced bidirectionally. In addition, the coding regions of the VMD2 gene were completely sequenced in six probands with familial Best disease who showed no SSCP shift. RESULTS: Forty different probable or possible disease-causing mutations were found in one or more Best disease or AMD patients. Twenty-nine of these variations are novel. Of the 39 probands with familial Best disease, mutations were detected in all 39 (33 by SSCP and 6 by DNA sequencing). SSCP screening of the 57 probands with a clinical diagnosis of Best disease but no family history revealed 16 with mutations. Mutations were found in 5 of 321 AMD patients (1.5%), a fraction that was not significantly greater than in control individuals (0/192, 0%). CONCLUSIONS: Patients with the clinical diagnosis of Best disease are significantly more likely to have a mutation in the VMD2 gene if they also have a positive family history. These findings suggest that a small fraction of patients with the clinical diagnosis of AMD may actually have a late-onset variant of Best disease, whereas at the same time, a considerable fraction of isolated patients with the ophthalmoscopic features of Best disease are probably affected with some other macular disease.
Resumo:
Starting from a cohort of 50 NADH-oxidoreductase (complex I) deficient patients, we carried out the systematic sequence analysis of all mitochondrially encoded complex I subunits (ND1 to ND6 and ND4L) in affected tissues. This approach yielded the unexpectedly high rate of 20% mutation identification in our series. Recurrent heteroplasmic mutations included two hitherto unreported (T10158C and T14487C) and three previously reported mutations (T10191C, T12706C and A13514G) in children with Leigh or Leigh-like encephalopathy. The recurrent mutations consistently involved T-->C transitions (p<10(-4)). This study supports the view that an efficient molecular screening should be based on an accurate identification of respiratory chain enzyme deficiency.
Resumo:
The BTAF1 transcription factor interacts with TATA-binding protein (TBP) to form the B-TFIID complex, which is involved in RNA polymerase II transcription. Here, we present an extensive mapping study of TBP residues involved in BTAF1 interaction. This shows that residues in the concave, DNA-binding surface of TBP are important for BTAF1 binding. In addition, BTAF1 interacts with residues in helix 2 on the convex side of TBP as assayed in protein-protein and in DNA-binding assays. BTAF1 drastically changes the TATA-box binding specificity of TBP, as it is able to recruit DNA-binding defective TBP mutants to both TATA-containing and TATA-less DNA. Interestingly, other helix 2 interacting factors, such as TFIIA and NC2, can also stabilize mutant TBP binding to DNA. In contrast, TFIIB which interacts with a distinct surface of TBP does not display this activity. Since many proteins contact helix 2 of TBP, this provides a molecular basis for mutually exclusive TBP interactions and stresses the importance of this structural element for eukaryotic transcription.
Resumo:
Viral double-stranded RNA (dsRNA) is a ubiquitous intracellular "alert signal" used by cells to detect viral infection and to mount anti-viral responses. DsRNA triggers a rapid (complete within 2-4 h) apoptosis in the highly-susceptible HeLa cell line. Here, we demonstrate that the apical event in this apoptotic cascade is the activation of procaspase 8. Downstream of caspase 8, the apoptotic signaling cascade bifurcates into a mitochondria-independent caspase 8/caspase 3 arm and a mitochondria-dependent, caspase 8/Bid/Bax/Bak/cytochrome c arm. Both arms impinge upon, and activate, procaspase 9 via two different cleavage sites within the procaspase 9 molecule (D330 and D315, respectively). This is the first in vivo demonstration that the "effector" caspase 3 plays an "initiator" role in the regulation of caspase 9. The dsRNA-induced apoptosis is potentiated by the inhibition of protein synthesis, whose role is to accelerate the execution of all apoptosis steps downstream of, and including, the activation of caspase 8. Thus, efficient apoptosis in response to viral dsRNA results from the co-operation of the two major apical caspases (8 and 9) and the dsRNA-activated protein kinase R (PKR)/ribonuclease L (RNase L) system that is essential for the inhibition of protein synthesis in response to viral infection.
Resumo:
BACKGROUND: Ultra high throughput sequencing (UHTS) technologies find an important application in targeted resequencing of candidate genes or of genomic intervals from genetic association studies. Despite the extraordinary power of these new methods, they are still rarely used in routine analysis of human genomic variants, in part because of the absence of specific standard procedures. The aim of this work is to provide human molecular geneticists with a tool to evaluate the best UHTS methodology for efficiently detecting DNA changes, from common SNPs to rare mutations. METHODOLOGY/PRINCIPAL FINDINGS: We tested the three most widespread UHTS platforms (Roche/454 GS FLX Titanium, Illumina/Solexa Genome Analyzer II and Applied Biosystems/SOLiD System 3) on a well-studied region of the human genome containing many polymorphisms and a very rare heterozygous mutation located within an intronic repetitive DNA element. We identify the qualities and the limitations of each platform and describe some peculiarities of UHTS in resequencing projects. CONCLUSIONS/SIGNIFICANCE: When appropriate filtering and mapping procedures are applied UHTS technology can be safely and efficiently used as a tool for targeted human DNA variations detection. Unless particular and platform-dependent characteristics are needed for specific projects, the most relevant parameter to consider in mainstream human genome resequencing procedures is the cost per sequenced base-pair associated to each machine.
Resumo:
In the forensic examination of DNA mixtures, the question of how to set the total number of contributors (N) presents a topic of ongoing interest. Part of the discussion gravitates around issues of bias, in particular when assessments of the number of contributors are not made prior to considering the genotypic configuration of potential donors. Further complication may stem from the observation that, in some cases, there may be numbers of contributors that are incompatible with the set of alleles seen in the profile of a mixed crime stain, given the genotype of a potential contributor. In such situations, procedures that take a single and fixed number contributors as their output can lead to inferential impasses. Assessing the number of contributors within a probabilistic framework can help avoiding such complication. Using elements of decision theory, this paper analyses two strategies for inference on the number of contributors. One procedure is deterministic and focuses on the minimum number of contributors required to 'explain' an observed set of alleles. The other procedure is probabilistic using Bayes' theorem and provides a probability distribution for a set of numbers of contributors, based on the set of observed alleles as well as their respective rates of occurrence. The discussion concentrates on mixed stains of varying quality (i.e., different numbers of loci for which genotyping information is available). A so-called qualitative interpretation is pursued since quantitative information such as peak area and height data are not taken into account. The competing procedures are compared using a standard scoring rule that penalizes the degree of divergence between a given agreed value for N, that is the number of contributors, and the actual value taken by N. Using only modest assumptions and a discussion with reference to a casework example, this paper reports on analyses using simulation techniques and graphical models (i.e., Bayesian networks) to point out that setting the number of contributors to a mixed crime stain in probabilistic terms is, for the conditions assumed in this study, preferable to a decision policy that uses categoric assumptions about N.
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, with current methods for DNA analysis (Polymerase Chain Reaction with the SGM Plus™ multiplex kit), it is generally not possible to obtain a conventional autosomal DNA profile of the minor contributor if the ratio between the two contributors in a mixture is smaller than 1:10. This is a consequence of the fact that the major contributor's profile 'masks' that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP), linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed elsewhere in literature [1]. The present paper reports on the derivation of an approach for the probabilistic evaluation of DIP-STR profiling results obtained from unbalanced DNA mixtures. The procedure is based on object-oriented Bayesian networks (OOBNs) and uses the likelihood ratio as an expression of the probative value. OOBNs are retained in this paper because they allow one to provide a clear description of the genotypic configuration observed for the mixed stain as well as for the various potential contributors (e.g., victim and suspect). These models also allow one to depict the assumed relevance relationships and perform the necessary probabilistic computations.
Resumo:
The efficiency of co-expression and linkage of distinct T-DNAs present in separate Agrobacterium tumefaciens was analysed in Arabidopsis thaliana transformed by the vacuum infiltration method. Co-expression was monitored by the synthesis of three bacterial proteins involved in the production of polyhydroxybutyrate (PHB) in the plastids. Out of 80 kanamycin-resistant transgenic plants analysed, 13 plants were co-transformed with the two distinct T-DNAs and produced PHB. Of those, 7 lines had a kanamycin-resistance segregation ratio consistent with the presence of a single functional insert. Genetic linkage between the distinct T-DNAs was demonstrated for all 13 PHB-producing lines, while physical linkage between the distinct T-DNAs was shown for 12 out of 13 lines. T-DNAs were frequently linked in an inverted orientation about the left borders. Transformation of A. thaliana by the co-infiltration of two A. tumefaciens containing distinct T-DNAs is, thus, an efficient approach for the integration and expression of several transgenes at a single locus. This approach will facilitate the creation and study of novel metabolic pathways requiring the expression of numerous transgenes.
Resumo:
PURPOSE: Two mutations (R555Q and R124L) in the BIGH3 gene have been described in anterior or Bowman's layer dystrophies (CDB). The clinical, molecular, and ultrastructural findings of five families with CDB was reviewed to determine whether there is a consistent genotype:phenotype correlation. METHODS: Keratoplasty tissue from each patient was examined by light and electron microscopy (LM and EM). DNA was obtained, and exons 4 and 12 of BIGH3 were analyzed by polymerase chain reaction and single-stranded conformation polymorphism/heteroduplex analysis. Abnormally migrating products were analyzed by direct sequencing. RESULTS: In two families with type I CDB (CDBI), the R124L mutation was defined. There were light and ultrastructural features of superficial granular dystrophy and atypical banding of the "rod-shaped bodies" ultrastructurally. Patients from three families with "honeycomb" dystrophy were found to carry the R555Q mutation and had characteristic features of Bowman's dystrophy type II (CDBII). CONCLUSIONS: There is a strong genotype:phenotype correlation among CBDI (R124L) and CDBII (R555Q). LM and EM findings suggest that epithelial abnormalities may underlie the pathology of both conditions. The findings clarify the confusion over classification of the Bowman's layer dystrophies.