217 resultados para Recombinant Antigens
Resumo:
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Resumo:
A class of secreted poxvirus tumor necrosis factor (TNF)-binding proteins has been isolated from Tanapox-infected cell supernatants. The inhibitor bound to a TNF-affinity column and was identified as the product of the 2L gene. Sequence analysis of 2L family members from other yatapoxviruses and swinepox virus yielded no sequence homology to any known cellular gene. The expressed Tanapox virus 2L protein bound to human TNF with high affinity (K(d) = 43 pM) and exhibits an unusually slow off-rate. However, 2L is unable to bind to a wide range of human TNF family members. The 2L protein can inhibit human TNF from binding to TNF receptors I and II as well as block TNF-induced cytolysis. Thus, Tanapox virus 2L represents an inhibitor of human TNF and offers a unique strategy with which to modulate TNF activity.
Resumo:
Carcinoembryonic antigen (CEA) has been shown to be one of the best markers for in vivo tumor targeting of radiolabeled antibodies, despite the fact that it is localized predominantly at the apical side of human colon carcinoma cells within the fairly closed pseudolumen structures formed by these tumors. Due to this particular histological localization, a large proportion of the CEA molecules may remain inaccessible to the intravenously injected radiolabeled anti-CEA antibodies of IgG isotype, which are widely used in the clinic. In order to improve targeting, we made a recombinant dimeric IgA, which should have the capacity to translocate from the basolateral to the apical side of the pseudolumen formed by colon carcinoma cells after binding to the polyIg receptor (pIgR). A genomic chimeric mouse-human IgA2 construct was made using one of our most specific anti-CEA hybridomas, CE-25. The chimeric IgA (chIgA) was expressed in the Sp2/0 myeloma cell line. The secreted recombinant antibody was found to consist mostly of a dimeric form of IgA with a molecular weight of about 350 kDa. The dimeric chIgA was shown to translocate efficiently in vitro across a monolayer of epithelial cells expressing the pIgR and to retain full CEA binding activity.
Resumo:
BACKGROUND: To be effective and selective, immunotherapy ideally targets specifically tumor cells and spares normal tissues. Identification of tumor specific antigens is a prerequisite to establish an effective immunotherapy. Still very little is known about the expression of tumor-related antigens in pancreatic neoplasms. Cancer Testis antigens (CT) are antigens shared by a variety of malignant tumors, but not by normal tissues with the exception of germ cells in testis. Restricted expression in neoplastic tissues and inherent immunogenic features make CT antigens ideal for use in immunotherapy. We analyzed the expression of a selected panel of nine CT antigens that have been proven to elicit an efficient immunogenic response in other malignancies. In addition we analyzed the expression of HERV-K-MEL, an immunogenic antigen of viral origin. METHODS: Pancreatic adenocarcinoma tumor samples (n=130) were obtained intraoperatively, control tissues (n=23) were collected from cadaveric donor and from patients with chronic pancreatitis. Tumor-associated antigen expression of MAGE-A1, MAGE-A3, MAGE-A4, MAGE-A10, LAGE-1, NY-ESO-1, SCP-1, SSX-2, SSX-4 and HERV-K-MEL was assessed by PCR. Sequencing of PCR products were performed to assess the expression of SSX-4 in neoplastic and normal pancreatic tissues. RESULTS: Three of 10 tested antigens were expressed in over 10% of malignant pancreatic tissue samples. SSX-4 was found positive in 30% of cases, SCP-1 in 19% and HERV-K-MEL in 23% of cases. No expression of CT antigens was found in non-malignant pancreatic tissue with the exception of SSX-4 and and SSX-2. CONCLUSIONS: Fifty two percentage of the analyzed tissues expressed at least one CT antigen. The concomitant expression of SSX-4 in both malignant and non-malignant pancreatic tissue is a new finding which may raise concerns for immunotherapy. However, HERV-K-MEL is expressed with a relatively high prevalence and may be a candidate for specific immunotherapy in a large subgroup of pancreatic cancer patients. This study advocates the analysis of patients with regard to their immunogenic profile before the onset of antigen-specific immunotherapy.
Resumo:
hShroom1 (hShrm1) is a member of the Apx/Shroom (Shrm) protein family and was identified from a yeast two-hybrid screen as a protein that interacts with the cytoplasmic domain of melanoma cell adhesion molecule (MCAM). The characteristic signature of the Shrm family is the presence of a unique domain, ASD2 (Apx/Shroom domain 2). mRNA analysis suggests that hShrm1 is expressed in brain, heart, skeletal muscle, colon, small intestine, kidney, placenta and lung tissue, as well a variety of melanoma and other cell lines. Co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) experiments indicate that hShrm1 and MCAM interact in vivo and by immunofluorescence microscopy some co-localization of these proteins is observed. hShrm1 partly co-localises with beta-actin and is found in the Triton X-100 insoluble fraction of melanoma cell extracts. We propose that hShrm1 is involved in linking MCAM to the cytoskeleton.
Resumo:
BAFF deficiency in mice impairs B cell development beyond the transitional stage 1 in the spleen and thus severely reduces the size of follicular and marginal zone B cell compartments. Moreover, humoral immune responses in these mice are dramatically impaired. We now addressed the question whether the decrease in mature B cell numbers and the reduced humoral immune responses in BAFF-deficient mice could be overcome by the injection of recombinant BAFF. We therefore engineered a recombinant protein containing the human IgG1 Fc moiety fused to receptor-binding domain of human BAFF (Fc-BAFF). At 1 week after the second injection of this fusion protein a complete rescue of the marginal zone B cell compartment and a 50% rescue of the follicular B cell compartment was observed. Moreover these mice mounted a T cell-dependent humoral immune response indistinguishable from wild-type mice. By day 14 upon arrest of Fc-BAFF treatment mature B cell numbers in the blood dropped by 50%, indicating that the life span of mature B cells in the absence of BAFF is 14 days or less. Collectively these findings demonstrate that injection of Fc-BAFF in BAFF-deficient mice results in a temporary rescue of a functional mature B cell compartment.
Resumo:
Secretory component (SC) represents the soluble ectodomain of the polymeric Ig receptor, a membrane protein that transports mucosal Abs across epithelial cells. In the protease-rich environment of the intestine, SC is thought to stabilize the associated IgA by unestablished molecular mechanisms. To address this question, we reconstituted SC-IgA complexes in vitro by incubating dimeric IgA (IgAd) with either recombinant human SC (rSC) or SC isolated from human colostral milk (SCm). Both complexes exhibited an identical degree of covalency when exposed to redox agents, peptidyl disulfide isomerase, and temperature changes. In cross-competition experiments, 50% inhibition of binding to IgAd was achieved at approximately 10 nM SC competitor. Western blot analysis of IgAd digested with intestinal washes indicated that the alpha-chain in IgAd was primarily split into a 40-kDa species, a phenomenon delayed in rSC- or SCm-IgAd complexes. In the same assay, either of the SCs was resistant to degradation only if complexed with IgAd. In contrast, the kappa light chain was not digested at all, suggesting that the F(ab')2 region was left intact. Accordingly, IgAd and SC-IgAd digestion products retained functionality as indicated by Ag reactivity in ELISA. Size exclusion chromatography under native conditions of digested IgAd and rSC-IgAd demonstrates that SC exerts its protective role in secretory IgA by delaying cleavage in the hinge/Fc region of the alpha-chain, not by holding together degraded fragments. The function of integral secretory IgA and F(ab')2 is discussed in terms of mucosal immune defenses.
Resumo:
OBJECTIVE: Meningococcal disease causes septic shock with associated disseminated intravascular coagulation and hemorrhagic skin necrosis. In severe cases, widespread vascular thrombosis leads to gangrene of limbs and digits and contributes to morbidity and mortality. Uncontrolled case reports have suggested that thrombolytic therapy may prevent some complications, and the use of tissue plasminogen activator (t-PA) has been widespread. Our aim was to summarize the clinical outcome and adverse effects where systemic t-PA has been used to treat children with fulminant meningococcemia. DESIGN: International, multiple-center, retrospective, observational case note study between January 1992 and June 2000. SETTING: Twenty-four different hospitals in seven European countries and Australia. PATIENTS: A total of 62 consecutive infants and children with severe meningococcal sepsis in whom t-PA was used for the treatment of predicted amputations and/or refractory shock (40 to treat severe ischemia, 12 to treat shock, and ten to treat both). INTERVENTIONS: t-PA was administered with a median dose of 0.3 mg.kg(-1).hr(-1) (range, 0.008-1.13) and a median duration of 9 hrs (range, 1.2-83). MAIN RESULTS: Twenty-nine of 62 patients died (47%; 95% confidence interval, 28-65). Seventeen of 33 survivors had amputations (11 below knee/elbow or greater loss; six less severe). In 12 of 50 patients to whom t-PA was given for imminent amputation, no amputations were observed. Five developed intracerebral hemorrhages (five of 62, 8%; 95% confidence interval, 0.5-16). Of these five, three died, one developed a persistent hemiparesis, and one recovered completely. CONCLUSIONS: The high incidence of intracerebral hemorrhage in our study raises concerns about the safety of t-PA in children with fulminant meningococcemia. However, due to the absence of a control group in such a severe subset of patients, whether t-PA is beneficial or harmful cannot be answered from the unrestricted use of the drug that is described in this report. Our experience highlights the need to avoid strategies that use experimental drugs in an uncontrolled fashion and to participate in multiple-center trials, which are inevitably required to study rare diseases.
Resumo:
Mouse mammary tumor virus (MMTV) has been shown to preferentially infect B lymphocytes in vivo. We have used recombinant envelope-coated fluospheres and highly purified MMTV particles to study the distribution of the viral receptors on fresh mouse lymphocytes. A preferential dose-dependent binding to B lymphocytes was observed which could be competed with neutralizing antibodies. In contrast, T-lymphocyte binding remained at background levels. These results strongly suggest a higher density of viral receptor molecules on B lymphocytes than on T lymphocytes and correlate with the preferential initial infection of B lymphocytes observed in vivo.
Resumo:
Two different monoclonal antibodies (MAb), called L-D1 and L-C5, were produced after immunization with either intact cells or the methanol phase of glycolipid extracts, respectively, from the same human colon carcinoma line, LoVo. As determined by an antibody-binding radioimmunoassay (RIA) on intact cells, MAb L-D1 and MAb L-C5 were highly reactive with all five colon carcinoma lines tested and with only one out of the 21 cell lines of various tissue origin tested. No reactivity of either MAb was observed with peripheral blood lymphocytes, granulocytes, or erythrocytes from healthy donors of various blood groups. Both MAb were tested in competitive binding experiments with an anti-CEA MAb from our laboratory (CEA 35) and with two previously described anti-colon carcinoma MAb from the Wistar Institute called 1083-17-1A (17-1A) and NS-19.9. In competitive binding experiments, MAb L-D1 was inhibited by MAb 17-1A and reciprocally, whereas MAb L-C5 was not inhibited by any of the other MAb tested. MAb L-D1 precipitated a major protein band with an apparent molecular weight (MW) of 41 kilodaltons (kD); interestingly, MAb 17-1A, which was reported to react with an uncharacterized antigen, precipitated the same protein band of 41 kD. This was confirmed with immunodepletion experiments. Furthermore, after treatment of the colon carcinoma cell line with tunicamycin, both MAb L-D1 and 17-1A precipitated a protein band of 35 kD. This shift of 6 kD suggests that the glycoprotein recognized by these 2 MAb contains two to three N-linked carbohydrate side chains. MAb L-C5 precipitated a group of three to four protein bands ranging from 43 to 53 kD that were not modified by tunicamycin treatment. A preliminary study conducted by using immunoperoxidase labeling on frozen sections of primary colon carcinoma showed that the two new MAb react strongly with these tumors, but also weakly with the normal adjacent mucosa, as did the other anti-colon carcinoma MAb tested.
Resumo:
The human melanoma-associated antigen identified by the monoclonal antibody (mAb) Me14-D12 is a cell surface protein whose expression is induced by interferon-gamma (IFN-gamma). We have recently reported the molecular cloning of a genomic probe specific for the gene and mRNA of this protein. By screening with the genomic probe, we have now isolated a full length 3.0 kb cDNA from a Raji cell line-derived lambda-gt10 library. Sequence analysis of this cDNA showed a 99.8% homology with the intercellular adhesion molecule-1 (ICAM-1). Mouse Ltk- cells stably transfected with the human cDNA clone were found to express the ICAM-1 antigenic determinants detected by mAb Me14-D12 and a reference anti-ICAM-1 mAb, as judged by surface immunofluorescence. Immunoprecipitation of surface-iodinated proteins with mAb Me14-D12 revealed the presence of a 90 kD molecule with identical mobility to ICAM-1. In addition, mAb Me14-D12 could inhibit the phorbolester-stimulated aggregation of U937 cells. The findings show that the human melanoma-associated Me14-D12 antigen is the adhesion molecule ICAM-1.
Resumo:
Chinese hamster ovary (CHO) cells are the system of choice for the production of complex molecules, such as monoclonal antibodies. Despite significant progress in improving the yield from these cells, the process to the selection, identification, and maintenance of high-producing cell lines remains cumbersome, time consuming, and often of uncertain outcome. Matrix attachment regions (MARs) are DNA sequences that help generate and maintain an open chromatin domain that is favourable to transcription and may also facilitate the integration of several copies of the transgene. By incorporating MARs into expression vectors, an increase in the proportion of high-producer cells as well as an increase in protein production are seen, thereby reducing the number of clones to be screened and time to production by as much as 9 months. In this chapter, we describe how MARs can be used to increase transgene expression and provide protocols for the transfection of CHO cells in suspension and detection of high-producing antibody cell clones.