342 resultados para Computer-mediated
Resumo:
Type 1 diabetes is characterized by the infiltration of activated leukocytes within the pancreatic islets, leading to beta-cell dysfunction and destruction. The exact role played by interferon-gamma, tumor necrosis factor (TNF)-alpha, and interleukin-1beta in this pathogenic process is still only partially understood. To study cytokine action at the cellular level, we are working with the highly differentiated insulin-secreting cell line, betaTc-Tet. We previously reported that it was susceptible to apoptosis induced by TNF-alpha, in combination with interleukin-1beta and interferon-gamma. Here, we report that cytokine-induced apoptosis was correlated with the activation of caspase-8. We show that in betaTc-Tet cells, overexpression of cFLIP, the cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein, completely abolished cytokine-dependent activation of caspase-8 and protected the cells against apoptosis. Furthermore, cFLIP overexpression increased the basal and interleukin-1beta-mediated transcriptional activity of nuclear factor (NF)-kappaB, whereas it did not change cytokine-induced inducible nitric oxide synthase gene transcription and nitric oxide secretion. The presence of cFLIP prevented the weak TNF-alpha-induced reduction in cellular insulin content and secretion; however, it did not prevent the decrease in glucose-stimulated insulin secretion induced by the combined cytokines, in agreement with our previous data demonstrating that interferon-gamma alone could induce these beta-cell dysfunctions. Together, our data demonstrate that overexpression of cFLIP protects mouse beta-cells against TNF-alpha-induced caspase-8 activation and apoptosis and is correlated with enhanced NF-kappaB transcriptional activity, suggesting that cFLIP may have an impact on the outcome of death receptor-triggered responses by directing the intracellular signals from beta-cell death to beta-cell survival.
Resumo:
Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within the pol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6(gag)-p6(pol) region of HIV-1, placed immediately upstream of pol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6(Gag)), or by changes in activation of the viral protease (p6(Pol)). Duplication of the proline-rich p6(Gag) PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naïve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6(Pol)), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.
Resumo:
Rapport de synthèse : La consommation de boissons sucrées contenant du fructose a remarquablement augmenté ces dernières décennies et, on pense qu'elle joue un rôle important dans l'épidémie actuelle d'obésité et de troubles métaboliques. Des études faites sur des rats ont montré qu'une alimentation riche en sucre ou fructose induisait une obésité, une résistance à l'insuline, diabète, dyslipidémie et une hypertension artérielle, tandis que chez l'homme, une alimentation riche en fructose conduit, après quelques jours, au développement d'une hypertryglycémie et une résistance hépatique à l'insuline. Nous avons entrepris une étude de 7 jours d'alimentation riche en fructose ou d'une alimentation contrôlée chez six hommes en bonne santé. Les NEFA plasmatiques et la beta-hydroxybutyrate, l'oxydation nette de lipide (calorimétrie indirecte) et l'oxydation exogène de lipide (13 CO2) ont été surveillés dans des conditions basales, et après un chargement en lipide (huile d'olive marqué au 13C-trioléine), puis durant un stress mental standardisé. La clearance de lactate et les effets métaboliques de la perfusion de lactate exogène ont également été évalués. Nos résultats ont montré que l'alimentation riche en fructose diminue la concentration plasmatique de NEFA, de beta-hydroxybutyrate de même que l'oxydation des lipides dans les conditions de bases et après surcharge en lipides. De plus, l'alimentation riche en fructose amortie l'augmentation des NEFA plasmatique et l'oxydation des lipides exogènes durant le stress mental. Elle augmente également la concentration basale de lactate et la production de lactate de respectivement 31.8% et 53.8%, tandis que la clearance du lactate reste inchangée. L'injection de lactate diminue le taux des NEFA lors de l'alimentation de contrôle et l'alimentation de base, et l'oxydation nette de lipide lors de l'alimentation de contrôle et l'alimentation riche en fructose. Ces résultats indiquent que 7 jours d'alimentation riche en fructose inhibent remarquablement la lipolyse et l'oxydation des lipides. L'alimentation riche en fructose augmente aussi la production de lactate, et l'augmentation de l'utilisation de lactate peut contribuer à supprimer l'oxydation des lipides. Abstact : The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and β-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C] triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and (β-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8%, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.
Resumo:
The measurement of rigidity and perseveration respectively gets increasing importance in clinical psychodiagnostics. Recently we have developed a computer-assisted technique which allows to get information about inadequate persisting in psychic processes and behaviour within shortest time and to differentiate between psychopathological groups. 257 patients of both sexes who came for elucidation of their disorders to the department of clinical psychodiagnostics were investigated. The most significant differences between the groups were found in redundance of second degree (the patient has to press 10 buttons indiscriminately according to the beat of a metronom--standard condition) and in personal speed (the patient has to press 10 buttons as fast as possible--speed condition). Furthermore the psychopathological groups were ranged in the particular variables of rigidity according to their mean values and their average ranges the schizophrenics and effective psychoses were characterized by a high tendency of perseveration while the neurotics, patients with organic brain syndrome and alcohol and drug dependents showed more flexibility.
Resumo:
PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.
Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa.
Resumo:
In response to iron starvation, Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted to the extracellular environment, pyochelin chelates iron and transports it to the bacterial cytoplasm via its specific outer-membrane receptor FptA and the inner-membrane permease FptX. Exogenously added pyochelin also acts as a signal which induces the expression of the pyochelin biosynthesis and uptake genes by activating PchR, a cytoplasmic regulatory protein of the AraC/XylS family. The importance of ferripyochelin uptake genes in this regulation was evaluated. The fptA and fptX genes were shown to be part of the fptABCX ferripyochelin transport operon, which is conserved in Burkholderia sp. and Rhodospirillum rubrum. The fptB and fptC genes were found to be dispensable for utilization of pyochelin as an iron source, for signalling and for pyochelin production. By contrast, mutations in fptA and fptX not only interfered with pyochelin utilization, but also affected signalling and diminished siderophore production. It is concluded from this that pyochelin-mediated signalling operates to a large extent via the ferripyochelin transport system.
Resumo:
One of the key mechanisms linking cell signaling and control of gene expression is reversible phosphorylation of transcription factors. FOXC2 is a forkhead transcription factor that is mutated in the human vascular disease lymphedema-distichiasis and plays an essential role in lymphatic vascular development. However, the mechanisms regulating FOXC2 transcriptional activity are not well understood. We report here that FOXC2 is phosphorylated on eight evolutionarily conserved proline-directed serine/threonine residues. Loss of phosphorylation at these sites triggers substantial changes in the FOXC2 transcriptional program. Through genome-wide location analysis in lymphatic endothelial cells, we demonstrate that the changes are due to selective inhibition of FOXC2 recruitment to chromatin. The extent of the inhibition varied between individual binding sites, suggesting a novel rheostat-like mechanism by which expression of specific genes can be differentially regulated by FOXC2 phosphorylation. Furthermore, unlike the wild-type protein, the phosphorylation-deficient mutant of FOXC2 failed to induce vascular remodeling in vivo. Collectively, our results point to the pivotal role of phosphorylation in the regulation of FOXC2-mediated transcription in lymphatic endothelial cells and underscore the importance of FOXC2 phosphorylation in vascular development.
Resumo:
Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases.
Resumo:
ABSTRACT: BACKGROUND: Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. METHODS: Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. RESULTS: We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5'-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. CONCLUSIONS: Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.
Resumo:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin (Htt) gene. Despite intensive efforts devoted to investigating the mechanisms of its pathogenesis, effective treatments for this devastating disease remain unavailable. The lack of suitable models recapitulating the entire spectrum of the degenerative process has severely hindered the identification and validation of therapeutic strategies. The discovery that the degeneration in HD is caused by a mutation in a single gene has offered new opportunities to develop experimental models of HD, ranging from in vitro models to transgenic primates. However, recent advances in viral-vector technology provide promising alternatives based on the direct transfer of genes to selected sub-regions of the brain. Rodent studies have shown that overexpression of mutant human Htt in the striatum using adeno-associated virus or lentivirus vectors induces progressive neurodegeneration, which resembles that seen in HD. This article highlights progress made in modeling HD using viral vector gene transfer. We describe data obtained with of this highly flexible approach for the targeted overexpression of a disease-causing gene. The ability to deliver mutant Htt to specific tissues has opened pathological processes to experimental analysis and allowed targeted therapeutic development in rodent and primate pre-clinical models.
Resumo:
Psoriasis is one of the most common chronic, inflammatory, T-cell-mediated autoimmune diseases. Over the past decade, increased knowledge of disease pathogenesis has fundamentally changed psoriasis treatment, with the introduction of biologics, and this has led to a multitude of improved selective targets providing potential therapeutic options. Indeed, numerous pathogenesis-based treatments are currently in development, as psoriasis has also become increasingly relevant for proof-of-concept studies. The purpose of this review was to summarize current knowledge of psoriasis immunopathogenesis, focusing on the T-cell-mediated immune response and its initiation. The authors describe recent advances in psoriasis treatment and discuss pathogenesis-based therapies that are currently in development or which could be envisioned for the future. Although current biologics are well tolerated, several issues such as long-term efficacy, long-term safety, and high costs keep driving the search for new and better therapies. With further advances in understanding disease pathogenesis, more genomic data from psoriasis patients becoming available, and potentially the identification of autoantigens in psoriasis, current research should lead to the development of a growing arsenal of improved targeted treatments and to further breakthrough immunotherapies.
Resumo:
In heart transplantation (HTx), acute antibody-mediated rejection (AMR) is infrequent but carries high mortality and increased risk of graft vasculopathy. The diagnosis requires evidence of acute graft dysfunction, capillary lesions on endomyocardial biopsy (EMB), and immunopathological criteria of antibodymediated injury. Multiple markers of antibody-mediated injuries have been proposed, but there is ample debate on their usefulness. In kidney transplantation, C4d deposition in peritubular capillaries is a reliable marker of alloantibody-dependant graft injury. In this study, we prospectively screened all EMBs for C4d and CD68 in new HTx recipients, and correlated pathological fi ndings with immunological evidence of donor-specifi c antibodies (DSA) and graft dysfunction. Methods Between Nov 05 and Aug 08, we had 22 HTx, and 17 cases were analysed. All recipients received polyclonal rabbit anti-thymocytes globulin, calcineurin inhibitors, mycophenolate mofetil, and corticosteroids (weaning in 6 -12 months). They had EMB every 1-2 weeks in the fi rst 3 months, and then monthly for 9 months. C4d and CD 68 were assessed by immunochemistry. Echocardiography and DSA assessment or crossmatch (early phase) were realised if C4d or CD68 staining was positive. Results There was 1 early and 1 late AMR. Table 1 C4d and CD68 positive, at least 1 EMB 6 / 17; 35% 1 treated C4d and CD68 positive, at least 2 consecutive EMBs 3 / 17; 17.5% 1 treated C4d and CD68 positive, and graft dysfunction 1 / 17; 6% 1 treated C4d and CD68 positive, with DSA and crossmatch + 1 / 17; 6% 1 treated Table 2 C4d and CD68 positive, at least 1 EMB 1 / 17; 6% 1 treated C4d and CD68 positive, at least 2 consecutive EMBs 1 /17; 6% 1 treated C4d and CD68 positive and graft dysfunction 1 / 17; 6% 1 treated C4d and CD68 positive, and + DSA 1 / 17; 6% 1 treated Conclusion In this single-center experience, C4d / CD68 positive staining was frequent in the early phase and raised the question of false positive cases of AMR. However, these markers showed high specifi city for the diagnosis of AMR in the late phase. Of course these data need to be confi rmed in larger multi-center studies.
Resumo:
Treatment of B cell lymphoma patients with MoAbs specific for the common B cell marker (CD20) has shown a good overall response rate, but the number of complete remissions is still very low. The use of MoAbs coupled to radioisotopes can improve the results, but induces undesirable myelodepression. As an alternative, we proposed to combine the specificity of MoAbs with the immunogenicity of T cell epitopes. We have previously shown that an anti-Ig lambda MoAb coupled to an MHC class II-restricted universal T cell epitope peptide P2 derived from tetanus toxin induces efficient lysis of a human B cell lymphoma by a specific CD4+ T cell line. Here we demonstrate that the antigen presentation properties of the MoAb peptide conjugate are maintained using a MoAb directed against a common B cell marker, CD19, which is known to be co-internalized with the B cell immunoglobulin receptor. In addition, we provide evidence that B cell lysis is mediated by the Fas apoptosis pathway, since Fas (CD95), but not tumour necrosis factor receptor (TNFr) or TNF-related receptors, is expressed by the target B cells, and FasL, but not perforin, is expressed by the effector T cells. These results show that B cell lymphomas can be 'foreignized' by MoAb-peptide P2 conjugates directed against the common B cell marker CD19 and eliminated by peptide P2-specific CD4+ T cells, via the ubiquitous Fas receptor. This approach, which bridges the specificity of passive antibody therapy with an active T cell immune response, may be complementary to and more efficient than the present therapy results with unconjugated chimeric anti-CD20 MoAbs.