181 resultados para 157-956
Resumo:
Background and aim: Wilson disease (WD) is an inherited disorder ofhepatic copper excretion leading to toxic accumulation of copper in theliver as well as the brain, cornea, and other organs. The defect is due tomutations of the copper-transporting ATPase ATP7B. Here, we describethe adult cases of hepatic WD diagnosed at the CHUV between 2005and 2010.Methods: Clinical manifestions, results of diagnostic tests, and follow-upof adult patients with hepatic WD were recorded systematically.Results: Seven new adult cases of hepatic WD were diagnosed in ourcenter between 2005 and 2010. Three were women and 4 men, with amedian a ge at d iagnosis o f 24 (range, 1 8-56) years. Three patientspresented with acute liver failure (ALF), three with persistently elevatedliver function tests, and one with a dvanced cirrhosis. None hadneurological manifestations. Only one patient, presenting with ALF, had aKayser-Fleischer corneal ring. Median ceruloplasmin levels at diagnosiswere 0.13 (range, <0.03-0.30) g/l, median 24 h urinary copper excretion6.3 (range, 0.4-62.0) μmol/24 h, and median hepatic copperconcentration 591 (range, 284-1049) μg/g. At least one mutation in theATP7B g ene was i dentified in a ll patients. Allelic frequency of t hecommon H1069Q mutation was 14%. Two patients presenting with ALFand the one with advanced cirrhosis underwent successful l ivertransplantation. One patient with ALF recovered under chelator therapy.D-penicillamine was used as first-line chelator treatment, with a switch totrientine due to adverse effects in 2 out of 4 patients u nder l ong-termtreatment.Conclusions: The clinical presentation of WD and the performance ofdiagnostic tests are variable. A high index of suspicion i n clinicallycompatible situations i s key, with a combination of tests allowing thediagnosis of WD.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.
Resumo:
PURPOSE: Thick choroid (pachychoroid) is associated with central serous chorioretinopathy (CSC), but whether pachychoroid is inherited is unknown. METHODS: In a prospective observational study, first- or second-degree relatives (16 individuals) of 5 patients with CSC had refraction and visual acuity measurement, fundus examination, nonmydriatic photography, and autofluorescence photography. Eyes were graded using the following criteria: 0: normal fundus and autofluorescence photography, 1: focal retinal pigment epithelium hyperfluorescence and/or hypofluorescence and/or retinal pigment epithelial detachment, 2: CSC or diffuse retinal epitheliopathy. Choroid thickness was measured by enhanced depth imaging mode on optical coherence tomography. RESULTS: Considering 395 μm as the threshold limit for normal subfoveal choroidal thickness, 50% of the eyes from relatives had a thick choroid. Nine eyes of Grade 0 (28%) with an isolated pachychoroid would thus have been considered normal, if choroidal thickness was not included as a screening sign predisposing for CSC. CONCLUSION: Our observation suggests that pachychoroid could be an inherited condition with potentially a dominant transmission mode. Its inclusion in the phenotype of CSC for genetic studies should be considered.
Resumo:
The aim of our study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable for the routine determination of blood CO concentration in forensic toxicology laboratories. The main drawback of the GC/MS methods discussed in literature for CO measurement is the absence of a specific CO internal standard necessary for performing quantification. Even if stable isotope of CO is commercially available in the gaseous state, it is essential to develop a safer method to limit the manipulation of gaseous CO and to precisely control the injected amount of CO for spiking and calibration. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in a vial in situ, an internal labeled standard gas ((13)CO) formed by the reaction of labeled formic acid formic acid (H(13)COOH) with sulfuric acid. As sulfuric acid can also be employed to liberate the CO reagent from whole blood, the procedure allows for the liberation of CO simultaneously with the generation of (13)CO. This method allows for precise measurement of blood CO concentrations from a small amount of blood (10 μL). Finally, this method was applied to measure the CO concentration of intoxicated human blood samples from autopsies.
Resumo:
Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo (13) C NMR spectroscopy coupled with the infusion labeled glial-specific substrate, such as acetate. In this study, we infused alpha-chloralose anesthetized rats with [2-(13) C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using (1) H-[(13) C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two-compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg ) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT ) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC ) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vx (g) and Vx (n) ) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations. In this (13) C-acetate labeling study, we propose a refined two-compartment analysis of brain energy metabolism based on (13) C turnover curves of acetate, glutamate and glutamine measured with state of the art in vivo dynamic MRS at high magnetic field in rats, enabling a deeper understanding of the specific role of glial cells in brain oxidative metabolism. In addition, the robustness of the metabolic fluxes determination relative to MRS data quality was carefully studied.
Resumo:
Filarial parasites cause debilitating diseases in humans and domesticated animals. Brugia malayi and Dirofilaria immitis are transmitted by mosquitoes and infect humans and dogs, respectively. Their life cycle is punctuated by a series of cuticular molts as they move between different hosts and tissues. An understanding of the genetic basis for these developmental transitions may suggest potential targets for vaccines or chemotherapeutics. Nuclear receptor (NR) proteins have been implicated in molting in the free-living nematode Caenorhabditis elegans and have well characterized roles in molting during larval development of Drosophila melanogaster. For example, the D. melanogaster E75 (NR1D3) NR gene is required for molting and metamorphosis, as well as egg chamber development in adult females. We have identified Bm-nhr-11and Di-nhr-6, B. malayi and D. immitis orthologues of E75. Both genes encode canonical nuclear receptor proteins, are developmentally regulated, and are expressed in a sex-specific manner in adults.
Resumo:
Biologicals have been used for decades in biopharmaceutical topical preparations. Because cellular therapies are rou-tinely used in the clinic they have gained significant attention. Different derivatives are possible from different cell and tissue sources, making the selection of cell types and establishment of consistent cell banks crucial steps in the initial whole-cell bioprocessing. Various cell and tissue types have been used in treatment of skin wounds including autolo-gous and allogenic skin cells, platelets, placenta and amniotic extracts from either human or animal sources. Experience with progenitor cells show that they may provide an interesting cell choice due to facility of out-scaling and known properties for wound healing without scar. Using defined animal cell lines to develop cell-free derivatives may provide initial starting material for pharmaceutical formulations that help in overall stability. Cell lines derived from ovine tis-sue (skin, muscle, connective tissue) can be developed in short periods of time and consistency of these cell lines was monitored by cellular life-span, protein concentrations, stability and activity. Each cell line had long culture periods up to 37 - 41 passages and protein measures for each cell line at passages 2 - 15 had only 1.4-fold maximal difference. Growth stimulation activity towards two target skin cell lines (GM01717 and CRL-1221; 40 year old human males) at concentrations ranging up to 6 μg/ml showed 2-3-fold (single extracts) and 3-7-fold (co-cultured extracts) increase. Proteins from co-culture remained stable up to 1 year in pharmaceutical preparations shown by separation on SDS- PAGE gels. Pharmaceutical cell-free preparations were used for veterinary and human wounds and burns. Cell lines and cell-free extracts can show remarkable consistency and stability for preparation of biopharmaceutical creams, moreover when cells are co-cultured, and have positive effects for tissue repair.
Resumo:
BACKGROUND: In this study we compared the immunogenicity of influenza vaccine administered intradermally to the standard intramuscular vaccination in lung transplant recipients. METHODS: Patients were randomized to receive the trivalent inactivated seasonal 2008-9 influenza vaccine containing either 6 μg (intradermal) or 15 μg (intramuscular) of hemagglutinin per viral strain. Immunogenicity was assessed by measurement of geometric mean titer of antibodies using the hemagglutination-inhibition (HI) assay. Vaccine response was defined as a 4-fold or higher increase of antibody titers to at least one vaccine antigen. RESULTS: Eighty-five patients received either the intradermal (n = 41) or intramuscular (n = 44) vaccine. Vaccine response was seen in 6 of 41 patients (14.6%) in the intradermal vs 8 of 43 (18.6%) in the intramuscular group (p = 0.77). Seroprotection (HI ≥1:32) was 39% for H1N1, 83% for H3N2 and 29% for B strain in the intradermal group vs 28% for H1N1, 98% for H3N2 and 58% for B strain in the intramuscular group (p = 0.36 for H1N1, p = 0.02 for H3N2, p < 0.01 for B). Mild adverse events were seen in 44% of patients in the intradermal group and 34% in the intramuscular group (p = 0.38). CONCLUSIONS: Immunogenicity of the 2008-9 influenza vaccine given intradermally or intramuscularly was overall poor in lung transplant recipients. Novel strategies for influenza vaccination in this population are needed.
Resumo:
This paper presents a method based on a geographical information system (GIS) to model ecological networks in a fragmented landscape. The ecological networks are generated with the help of a landscape model (which integrate human activities) and with a wildlife dispersal model. The main results are maps which permit the analysis and the understanding of the impact of human activities on wildlife dispersal. Three applications in a study area are presented: ecological networks at the landscape scale, conflicting areas at the farmstead scale and ecological distance between biotopes. These applications show the flexibility of the model and its potential to give information on ecological networks at different planning scales.
Resumo:
BACKGROUND AND AIMS: Ficolin-2 is an acute phase reactant produced by the liver and targeted to recognize N-acetyl-glucosamine which is present in bacterial and fungal cell walls. We recently showed that ficolin-2 serum levels were significantly higher in CD patients compared to healthy controls. We aimed to evaluate serum ficolin-2 concentrations in CD patients regarding their correlation with endoscopic severity and to compare them with clinical activity, fecal calprotectin, and CRP. METHODS: Patients provided fecal and blood samples before undergoing ileo-colonoscopy. Disease activity was scored clinically according to the Harvey-Bradshaw Index (HBI) and endoscopically according to the simplified endoscopic score for CD (SES-CD). Ficolin-2 serum levels and fecal calprotectin levels were measured by ELISA. RESULTS: A total of 136 CD patients were prospectively included (mean age at inclusion 41.5±15.4 years, 37.5% females). Median HBI was 3 [2-6] points, median SES-CD was 5 [2-8], median fecal calprotectin was 301 [120-703] μg/g, and median serum ficolin-2 was 2.69 [2.02-3.83] μg/mL. SES-CD correlated significantly with calprotectin (R=0.676, P<0.001), CRP (R=0.458, P<0.001), HBI (R=0.385, P<0.001), and serum ficolin-2 levels (R=0.171, P=0.047). Ficolin-2 levels were higher in CD patients with mild endoscopic disease compared to patients in endoscopic remission (P=0.015) but no difference was found between patients with mild, moderate, and severe endoscopic disease. CONCLUSIONS: Ficolin-2 serum levels correlate worse with endoscopic CD activity when compared to fecal calprotectin or CRP.